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Allltnct-Endochronic and DOn-a5sociated plastic formulations are compuecl by introducilla an "inelastic
stilness locus". defined as the locus of all strain increments in the strain space which live the same
magnitude of inelastic strain increments. For classical plasticity the locus is a strailbt line. while for
endoc:hronic: formulations it is a circle. sphere or a quadratic surface (ellipsoid). SiIIIiIarIy to vertex
hardenina models and the deformation theory of plasticity. endochrcmic: theory lives iIIIIuIic: straia for
strain increments tanaential to the current loading surface. while plasticity lives perfectly elastic: response.
However. in contrast to vertex hardellin•• the endochronic: inelastic: strain for tanaential strain inc:reIIIents is
normal to the loading surface. Consequently. endochronic theory is stiler than vertex hardenina for this
loacIina direction and is less prone to indicate instability. However. it is softer than plasticity. Amon8 all
possible constitutive relations. plasticity (without yield vertex) is least prone to indicate material instability.
and so it is the least safe model to assume if test data are inconclusive as far as the type of constitution law
is conc:cmed.

Tanacntial lincarization of the endoc:hronic: inelasticity is presented. The tensor of .....tiaI moduli.
with all of its components. depencls continuously on the strain increment cIirection in the strain space.
Endochronic anaIoIs of the loadina surface and of kinematic and isotropic: Iwdcnina rules are indicated.
and stress-inducecl anisotropy of the quadratic form delinin. intrinsic: .. illCl'ClftCllls is formuJated. It is
shown that for proponionalloadiq an cndochronic formulation can be readily c:oa.-ted to an equivalent
plasticity formulation. The fraeturlna material theory in which the IoadinI function depends on strain rather
than stress is also analyzed and it is shown that its inelastic stilness locus is similar as for plasticity.

Implications for material instability. and especially for stability of the respoMI to JllIIutiDIloIds of
small amplitude. are discussed. By contrast to plasticity. but similarly to viscopluticity, die adoc:Iuonic
inelasticity violates Uapunov-type stability conditions. but it meets a proper .c:otIIittuity cmditioD.
Refinements to satisfy both are possible. but questionable if 0lIe deals with ....,. such IS aeoIoIicaI
materials. which are unstable or exhibit strain softenina. Introclucina IUlIoIdiaa ud reIoaditIa criteria and a
certain type of kinematic hardening. the endoc:hronic formulation may be refined so as to mocIel cyclic
strain accumulation yet satisfy Drucker's postulate for the hysteresis loops.

I. OBJECTIVE

Viscoplasticity with strain-rate dependent viscosity[l, 2], which bas crystallized as endochronic
theory[3-19], is now receiving considerable attention and is beina employed with remarkable
success for modeling the experimentally observed inelastic properties of certain materials,
expecially those in which the prevailing mechanism of inelastic strain is not plastic yield but
microcracking or grain rearrangements with separations, as is characteristic of aeoIoIical
materials (soils, rocks. concrete)[4, S, 8-10.13-19]. Recently it bas been discovered,
however. that certain new. more sophisticated. plasticity formulations are capable of modeling
the available experimental data for these materials nearly as wen. Apperently. one faces a
situation where the problem of identification of the constitutive relation from the test data
available at present does not have a unique solution.

Therefore, rather than trying to fit further test data. an attempt will be made to compare the
types of three-dimensional response which various fonnulations give, and to determine what
are the essential dUferences between classical incremental plasticity (associated and non
associated). vertex hardening plasticity. and endaehronic inelasticity.

A reader who might expect this effort to involve a good deal of thermodynamics must be
warned that it will not be so. Application of thermodynamics provides for de constitutive
relations important restrictions. which have essentially been worked out both for classical
plasticity [20, 21,11] and endochronic forms of viscoplasticity[l, 2. 6, 7,11.12]. However, the
information furnished by thermodynamics is quite limited, and rather than further refinina the
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rigorosity of thermodynamic treatment it seems to be more profitable to turn attention to thQse
three-dimensional tensorial properties on which thermodynamics yields no information. These
are the properties which result from the microstructural mechanism of inealstic deformation
and are macroscopically manifested by the shape of the loading surfaces in stress and strain
spaces and the tangential stiffness for strain increments in various directions. Analysis of these
properties and their use for comparing endochronic and plastic formulations is the main
objective of this paper (based on report [10]).

2. PROTOTYPE FORMULATION OF NON·ASSOCIATED
INCREMENTAL PLASTICITY

Recently it has become clear that plasticity of many materials. expeciaJIy geological
materials (soils. rocks and concrete). is not associated witb the yield surface by means of a
normality rule and Drucker's postulate[22-2S]. The deviation from normality seems to be due
mainly to iRelutic di....ncy and internal friction due to hydrostatic pressure. A simple way to
handle it is to beIin witJussociated stress-strain relations and then relax normality only as far
as necessary, i.e. only as far as hydrostatic pressure p is concerned, as bas been done by
Rudnicki and Rice(26,27}. The resulting stress-strain relations may be written as

with

1dE*' =-du3K

(1)

(2)

(3)

For (df + /3' dcr)/(2h) jjlIlO:

for (df+ /3' du){(2h) < 0:

d ~ _.r. dr•.
r- 2T ' (41)

(4b)

Here subscripts i, j, k, m refer to cartesian coordinates Xi (i == 1,2,3); Sij =. Uil - St, u/3 == deviator
of stress tensor 0'". 0' == t:ttJ3 == -p =hydrostatic stress, &" == KrOJ¥lck.er delta, ell ... Eli - &,,113 =
deviator of (small. lillOll'ize4) suain tensor ./It E== «ttI3 volume&tic strUt component, e~, e~I,

.", f" ... efastic and plastic~nt of e/J and f; if sUetSS imensity; G, K= elastic sbear
and bulk moduli, h ... piutif; budeaina modulus, /3 = dilatancy factor, /3' ... coefticifnt of inter
nal friction. Parameters It, /3 a.Jld /3' are. in gcncral, functions of 0'1p and eventuaHy aI$O ~
When II ... II', the nonulity rule is sacisfied. and for /3"" fJ' it is not. If {J ... /3' == 0, eqns (2H4)
reduce to Prandtl-Reuss relations and arc associated with von Misq-type yield surface.

For reader's convenience. a brief sketch of the derivation oftheincremeDtal plastic
relations (2H4) for the case of nonDltIity (f3 == /3'), ~y·be siven. ftisi~ to realize that
incremental pJasticity rests on two basic hypotheses, wlU~h arer~ but by no means
necessary. One basic hypothesis is the eltistenceof a scalar yiokl fPl'Jf;tion. F. such that inelastic
strain occurs if and oaly if dF > 0(22) and F is independent· of the~c strain. Equations
(lH4) correspond to the form

F(O'I/, H.,) == i +g(u) - HI =O. (5)

where HI:: hardening parameter. Choosing (aRaH,,) dB., to be negative when loading takes
place, and noting that (aRaUij) dUi; + (iJF1aH,,)/dHt == 0, it is obvious that dUiMFJaO';;) > 0 when
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plastic hardening occurs, and dUlj(aRoulj)lI!iOO when it does not. The second basic hypothesis is
that the dependence of dE&' upon dUlj is linear[22]. Then, dEr - dUIMRaulj) or

(6)

where g'j are some constants. Now, adopting Drucker's postulate dUlj dE~' ~ 0[22-25], and
comparing this inequality with the condition dUlj(aRaulj) ~ 0 for continued plastic loading, it
follows that dEt' - aROUlr Furthermore, comparison with eqn (6) yields g'j - aRouij, and so one
may set dE~' = (aRaulj) dp.' with dp.' = (I/h)(aRautun) dutun. For the special yield function in
eqn (5), this may be written as

de"'= aF dp.'=s ..~
II as,j II f' (7)

dp. =2~ (df + pi du) (8)

where pi =dg(u)/du =friction coefficient, dp. =dp.'/2, and h =plastic hardening modulus. The
ratio of volumetric and deviatoric plastic strain increments for pure shear is dE'/d'YP

' =
dEri/2 de~'" iP'/s'l =p' (because for pure shear f =SI/)' which confirms that normality occurs
when p =p'.

3. PROTOTYPE FORMULATION OF ENDOCHRONIC INELASTICITY

The basic concept in endochronic formUlations is the characterization of inelastic strains in
terms of one or several non-decreasing scalar variables whose increments depend on strain
increments. This variable, which has been initially called reduced time[l, 2], is now generally
known as intrinsic time. This term was introduced by Valanis[3], who was first to apply the
concept successfully to complieatednonlinear behavior, particularly cyclic: loadiDa and cross
hardening of metals, and coined the Greek term "endochronic". The theory is most properly
regarded in the context of viscoplastic:ity[l-3]; it is obtained as a special case of viscoplasticity
with strain-rate dependent viscosity (introduced by Sc::hapery [I» if one imposes the require
ment that for a strain rate approaching infinity the ratio of inelastic and elastic strain increment
magnitudes must be neither zero nor infinite (see Appendix). The intrinsic time for time
independent behavior may be geometrically interpreted as the leDJth of the path traced by the
states of the material in a strain space of suitable metric:. A variable of this type has been in use
since the early 19505 (Hill, Dyushin, Rivlin and Pipkin, see [3,4». Thermodynamics of the
viscoplastic constitutive relations based on intrinsic (or reduced) time has been formulated by
Schapery[l, 2], Valanis[3, 7,12] and others [l I].

Endochronic formulations of inelastic behavior lack the concept of yield surface and
suggest physical interpretations in terms of damage, microcracking, grain rearrangements and
internal friction. Thus, endochronic formulations seem to be more suited for geological
materials than for metals, in which the mechanism of inelastic strain is frictionless plastic: slip
(or dislocations). Therefore, the general form of the practical endochronic constitutive
relation [4, 5, 8] which have met with great success in modeling geoloPcaJ materials exhibiting
strain-softening, pressure sensitivity and inelastic dilatency[S, 8, 9,13-19] is chosen to serve as
the prototype endochronic formulation. Restricting attention to time-independent deformations,
we may write the constitutive relation in the form of eqn (I) in which

with

de&' =S'j d(, dEpt = dA (9)

(
1 ) 1/2

d~ = idell dell . (10)
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(a)

FII. L Loading and unloading for endocllronic theory.

(c)

Here, is called intrinsic time. ~ is called deformation measure. A= inelastic dilatancy (due to
shearing), Flo F2 = positive-valued scalar functions called hardening-softening functions.

The most conspicuous feature of the ordinary endochronic formulation (eqns 9 and 10) is
that no distinction is made between loading and unloading, provided that at the start of
unloading the inelastic stress increment can be assumed to be non-zero and equal to that for
continued loading. To illustrate it, consider the case of uniaxial strain, Elh with all other Eii

being zero[S]. Then, dropping subscripts II, d~ -ldEI and dEpt- O"ldfl. The incremental relation
is df = doofE +dfpt. which may be rewritten as dO' =E dE - d~, where d~ = E df"t or
der'" ,. Ecaid.l. c being some constant. Increments dO''' =E df and der'" are depicted in Fig. 1
for positive d•• Consider now that positive df is followed by neprive dE, i.e.loadiDais reversed
to unloedia&. Obviously, dO"" changes sign but Wi does not change sign because it depends on
IdEI. as is shown in Fig. 1(S]. Thus, the irreversibility at unloading the salient feature of all
inelastic behavior. is modeled by the endochronic formulation in a very simple manner. without
tbe need for any inequalities for expressing the unloading criterion. provided that the material
response is adequately described by the implied assumption of equality of tbe inelastic strains
for continued loading and for tbe start of unloading.

4. LOADING FUNCTION IN ENDOCHRONIC THEORY

In associated plasticity. the tensor of inelastic strain increments is derivable from a scalar
potential, called loading function or yield function. F(O'il)' Le. df~ - aF(O'il)/iO"ft. Even thouah
in non-associated plasticity and in endochronic theory the concept of yield surface lacks
physical foundation, it seems reasonable and useful to retain this concept for the en4ochronic
formulation and continue to speak of loadingfunction. All practical endochronic: formulations used
thus far satisfy this concept. The deviatoric: part of the endoc:hronic relations in eqns (9)-(10),
which were shown to agree with extensive test data, is associated with VOlt Misesloading function
because de~ - Si; - aN'/aSii' In the volumetric cross section, the loading function of the
endochronic theory is a curve (like that in Fig. 3b) with the slope (3' =aF/~ given by the relation
kaF'~" dEpt =dA in which. from the relation kiJF/iJSi; =de~ =$ij d', one finds k" tid{. Thus.
f3' = iJF'~ =dMd'. and so the endochronic formulation in eqns (9)-(10) may be written as

(11)

(12)

HI being a parameter independent of O'ii components. Note that here f3' inevitably depends not
only on current Ell and O'li but also on its history. and that dHI = -(aFl8o'i/) dfl'IJ(iJFliJH1) =
Sii dsi; + f3' dO'.

In the deviatoric strain space. a loading direction which is normal to the loading functions
associated with eqns (3) and (9) coincides with proportional (radial) loading paths. Most
experimental data pertain to such loading paths or to paths rather close to them. Even the
standard triaxial tests are essentially of this nature. because the hydrostatic stress. applied first.
causes little inelastic strain, with no directional damage (no stress-induced anisotropy), and the
uniaxial load which is subsequently superimposed is itself a proportional (radial) loading.

If attention is restricted to proportional or almost proportional loading, it appears from



Endoc:hronic inelasticity and incremental plasticity

numerical studies that the main experimental data available can be fitted reasonably closely by
either formulation, i.e. both endochronic theory and plasticity with dilatancy and friction can
represent the behavior of concrete under these conditions reasonably well. However, the two
formulations are vastly difterent in nonproportional loading. Of most interest are the strain
paths or stress paths which have a sharp comer. Such a comer must always be considered in
investigating instabilities (e.g. strain localization) due to material nonlinearity [28, 29]. In case of
instability, the strain or stress path can proceed in any direction in the strain or stress space,
and generally it will not proceed in the direction of the preceding strain path.

The strain increment dEli in the strain space will be called "normal loading" or straight
ahead IOGdillg when it is normal to the loading surface corresponding to tensor der, and
"tangential loading" or loading to the side when it is tangential to the loading surface. For the
loading functions associated with eqns (3) and (9) this corresponds to proportional loading
direction and directions normal to it, respectively (see Fig. 2).

current yield surface.F

A,-straill1t-ahead loading

A2
A~-IOading to tile side

A.. (tangent i al)

el

FII. 2. Various types of load path.

S. INELASTIC STIFFNESS LOCUS

For comparina the endocbronic and plastic formulations it is useful to define the fonowing
property.

Definition. Inelastic stiffness locus is the locus of all strain increments dEli which give for a
given initial state the same magnitude Idf"'l of the inelastic strain increment tensor dEr. The
mapitude (or Dorm) may be defiDed as the length of the vector dE r in a six-dimensional strain
space of suitable metric: or Jd("I- [dtr def + Mt(dEtl]tl2 where Mt--given constant

Note thatder is proportional to the plastic tangential modulus in the de,,-direction. Thus,
the fanber a point is on this locus from the current state in a given direction, the stiffer is the
plastic response in that direction.

To determine the locus just defined, it is necessary to express dtr in terms of dEij. Consider
first the plastic formulation. Equations OH4) may be reprded as a system of linear a1aebraic
equations in which dert are the unknowns and dllJ are given. First, dp. must be expressed in
terms of dEiJ- To this end, eqn (4&) may be used to calculate di - 2h dp. - fJ' dO'
2h dp. - KfJ'(3 dE - 2fJ dp.) -= 2 dp.(h +KfJfJ') - 3KfJ' dE. Then, from eqns (lH3), ds.... =
20(dekln - Skin dp./i), and so d;= SkM ds,.",/2; = (s....J2;)2G(dea, - Skin dp.li). Equating both
expressions for di, one obtains an equation which yields

d =OSkm dEkM + iKfJ' dEk/c
p. 2i(h +0 +KfJfJ')

(13)

It is now convenient to define inelastic stress increments as ds~ = 20 dert and d~ -= 3K d~".

Then du~' =ds~ + 8q dupl = 2(Osli + K/Ji8/j ) dp.li where 8/i =Kronecker delta. Substitution of
eqn (13) for dp. yields

with

Dr.1 =[(Oli)s/I + KfJ8u][(Olf)s. + Kp'!ra,,]
ijbn h + 0 + KfJfJ' .

(14)

OS)

These are the tangential moduli for inelastic stress increments. Note that they are symmetric if
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and only if fJ =fJ'. and that they are different from plastic tangential moduli defined by the
relation dO'li =cl1,. dd:'•.

It is now obvious that if DrAm dEkIn is constant, all components of dO'f;' are constant and then
IldO'f/~ as well as HdEf;'H is also constant. Substituting eqn (15) one finds that this happens for

3K{3'
Skin dekm =C - G TdE (16)

where C is some constant (.I.... de..., =Skin dEt",).
To interpret this result aeometrically, consider the material state (0'1;' Ell) plotted as point A

in superimposed stress and strain spaces in Fig. 3, separately for the deviatoric components and
for the volumetric cross section. Also imagine that a space of infinitesimal increments dEli is
superimposed at point A in Fis. 3. The six components of .IIi and de'l may be imagined to form
vectors s and de. Then, eqn (16) at constant dE may be written as s' de =const.; this is a scalar
product. and the equation means that the projection of vector de upon the direction of s (or .I;;)

must be constant. This shows that the inelastic stiffness locus is a plane in the six-dimensional
space of de'l- In the two-dimensional picture of Fig. 3(a), this locus is given by a straight line.
The normals to the current yield surface have the direction of .I'i' and the inelastic stiffness
locus consists of a straight line parallel to the tangent of the yield surface at point A. Similarly,
in the volumetric cross section, the inelastic stiffness locus is a straight line parallel to the
tangent of the current yield surface (see Fig. 3b).

Let attention be now turned to the endochronic formulation. Here, according to eqn (9),
constant values of dEr are obtained when d' = const., which corresponds to d~ = const. if O'li

and Ell are fixed. Hence, the locus of the end points of all strain increments d. or dEli which
give the same values of inelastic strain increments dEf;' is given by the equation

de'l deq =const. (17)

or de . de =const. Consequently, in the deviatoric strain space, the inelastic stiincss locus is a
hypersphere around point A, which appears in a two-dimensional picture as a circle (see Fis.
4&). Due to bardeninl and softeniDa functions of the endocbronic theory, the diameter of this
infinitesimal circle vanes as it is draaIed through the strain space, but the shape of the locus
always remains a circle. In the full strain space, eqn (17) represents a hypercylinder, and in the
two-dimensional volumetric cross sections (Fig. 4) the inelastic stilness locus appears as a set
of two parallel straiabt lines.

Note that for both plastic and endocbronic formulations, not only 1cMl'. but all components
of de~ are the same for all vectors dftl endiq on the inelastic stitfness locus.

Consider now the dependence of the tangent modulus of inelastic stress

(18)

upon the delJ-direction, characterized by anaIe a in Fiss. (3)-(5). By definition, \ldsf;'1 is constant
for all vectors deil on the inelastic stillness locus, and so 1/H is proportional to the distance,
\lde'/l, from point A to the inelastic stiffness locus along the a-direction. The plots of lIH vs a
are shown in Fig. 6.

(D)

F

A1,A2.A3.A4 = d£11
01,02.03,04 = dEll"_&II:

Fig. 3. Inelastic sillfness locus for plasticity theory.
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Fig. 4. Inelastic stiffness locus for endoc:hronic theory.
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FII. S. IneIutic stilness locus for vertex bardeniq and enclochronic: theory with uDloldiDa c:riterioa.

(a)

o
r" r~ '/~1" ,

" 211 0 'II 2'Il
FII· 6. 1Dtlutic: .....t modulus IS fllllCtioD of loIdiIII direc:tioa; for~ pIaticity (P), wrtu
bardeniq from F-. S<a) (V) aDd from FII. 7(b) 00, BadocIIroai.': theory (E), eadoc:Inaic: daeory willa

stms·iDcIuced lIIiIottopy (A).

Tbeinelastic stiffness locus reve81s the fundamental clifferencebetween plastic: dd·eadocb
ronic formulations. If both are fitted to the same data on proportioDalloadiDa, then the plastic
formulation is stiffer for loading to the side. For the tanaentialloadina clirection, plasticity lives
perfectly elastic response (H =0), while endochronic theory lives inelastic response (N > 0).
Nevertheless, it must be realized that in both these formulations the iDeIutic: ItI'Iin increment
def/ for all loadiDa directions of deq is always in ~ straiIht-abead direction, liven by the
normality rule (low rule), and the components of dlq in the taaaenti8l direction are purely
elastic; see the vectors dert and de: shown in FIlS. 3 and 4.

• 6. RELATIONSHIP TO VERTEX HARDENING EFFECTS

In recent developments of plasticity theory, the creation of corners (vertices) on the yield
surface, called "vertex hardening", bas received considerable attention. Acc:ordiDa to classical
plastic formulations (eqns 1-4) the inelastic strain is created only by the normal (attaiIbt-abead)
component of dt,j, whereas the tangential OOldina to the side) CODIpODeIlt CIIlIes no further
inelastic strain, with the consequence that the response for load increments to the ,ide is overall
much stifter than it is for straight-ahead 10adiDg. For pure )0'" to the side <FfI. 2), no
inelastic sttain is produced at all. This feature bas been recOlnized to codict with the
predictions of microstructural polycrystalline models of plasticity, wbic:h III indicate that the
"loading to the side" should also produce inelastic strain[30, 31].

To correct this defect various forms of vertex bardeniDa models have recently been
introduced. In some of them, the yield surface is assumed to form a vertex (CGI1IIf) at the
current state point on the loadina surface, which indicates the m.stic sdlDess locus to have
the shape shown in FII. Sea). A different tYPe of vertex hardeniDa las recently been proposed
by Rudnicki and Rice [26]; they considered linear incremental equations in which the expression
for de~ from eqn (3) is auamented by the term ('; dS1j - S'j d.;)/2h l '; where hI - plastic: modulus
for loading to the side; this term is derived from the requirements that it must vanish for
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straight-ahead loading (dsi/- Sill and must be linear in dsi/. When unloading takes place. this
term is omitted (along with the straight-ahead term 5i/ dp,/f). With the addition of the foregoing
term, the formulation still retains the linear form, which is formally identical to the original form.
provided that G, h, {3, f3' and K are replaced by the following parameters [26]:

13 = {3h/h,

13' = {3'h/h, g = [11K +{3{3'/(h.- h>r l
.

(19)

It is now clear that Rudnicki and Rice's vertex hardening still leads to the linear incremental
relation (14), in which however, DfA". is replaced by Dt/km and is expressed in terms of G, g, h.
13 and i'. However, the true elastic stress increments are not dsi/ = 2G dei/ but 2G dei/' Noting
that the elastic moduli are given as Dr:- =2G8uc8Jm + (K - 2G/3)8,j8tm, one must remove from
Dt/tltt dft", the false elastic stress increments jj~ dEtm and add the correct elastic stress
increments Df/tltt dEp" i.e.

(20)

Accordilll to cqn (IS), it is now necessary to replace eqn (16) for the inelastic stiffness locus by
the equation

(21)

where Cij are certain constants for a given stress state, It is appare.nt that, due to the last term
in eqn (21), the projection of vector .. upon vector da is no looser a constant but depends on
the loading direction d•. So, the inelastic stiffness locus can no longer be a straight line. The
expression within H"'N is liaear, and thus eqn (21) may be written in the form of a quadratic
equation for dft", components. Therefore, Rudnicki and Rice's vertex hardenina model [26]
gives the inelastic stiffness locus in the form of a quadratic: curve; this curve must intersect the
s~ 4irl=ction~(see Yip. Sb or 7b), and its curvature is a function of
mocltllus It, for~to tile side. (It must.be pointed out, however,._ this vertex bardening
model was iateaded[26] oaly for 10ldiaa ctirections which are close to the straillrt-ahead
direction.)

Tbereexiats one euential dilereace from the previous.cascs. For classicalpJasticity as well
as endodlroDictbeoty.oot oaly the ma..... of d,~ but all its C.~Dts are the same for
all VOCU'J ....Jl~ OIl the iQflllaJtic stilJleSS locus, while for Rudnicki and.e's vertex
hardening, only the mqnitude is the same while the individual components of d,~ vary when
moving along the locus. This means that the direction of d,~ depends on the direction of dEi/,
while for endochronic and plastic formulations the direction of df~ is unaffected by the
direction of _ On the other baDd, by introdw:ina modified elastic moduli the inelastic stiffness
locus for a~ki aadRiu's vertex hardenins caa be transformed to a straight line, whereas
for tile en49c:bronic fonouiation this is impossible. However, the endochronic fol'll'lUlations and
vertex bardeaina fo~ share one most important property-namely, for both the
loadiJII to the side creates iDelastic straia. This property, for eX8lQple, made it possible for
ValaJais t~ mo4el"cross-bardeDina of metals", such as the elect of plastic twist on subsequent
axialexteaaiQa diqrams, whicb was the earliest success of the enclocbronic formulaUon[3].

The .o4ence of .......t modulus H for inelastic stqss is depicted in Fig. 6 for vertex
hardeniq from Fig. 5(a). This dependence is not smooth, w,bile for tho endocbronic theory as
well as RI.1dQicki and Rice's vertex hardenina it is smooth. This miPt be preforable also for
iterative numerical solutions of strucnlral problems. In contrast to both classical plastic and
e~QDk fcwlndatioQl, the .inCAaS4iC strain increments are aaeraDynot in the strailht"'ad
direction and include iDeJaatic COfIlPOMQtsoriented to the side (FII. 5a). The taltlUtmodulus
auila." (no sum) for loadina to the side is aredueed modulus, while forendochronic and
plasticity theories it equals the unreduced elastic modulus for that direction.
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7. STRESS-INDUCED ANISOTROPY OF INTRINSIC TIME

In the light of the preceding discussion it seems appropriate to consider a generalization of
the endochronic theory in which the inelastic stiffness locus is not restricted to a circular
(hyperspherical) shape. Indeed, it would be purely by chance if for some real material the shape
were exactly circular. Modified shapes can be achieved by replacing dl from eqn (11) with

(
1 )lQ

dt' = 2Pi/im (q-) d~i; d~

in which Pi/*m(q-) are coefficients which are not constant but depend on stress tensor [O'ij] == 6. In
fact, since there is no reason for PiIkm to be independent of q-, one must expect that Pil*m
depends on q. For an initially anisotropic material, eqn (22) but with constant P""" was
proposed by Valanis[3]. A complete anisotropic formulation has been developed for clays[l9].

For isotropic materials, PiIkm must form an isotropic tensorial polynomial in q, and for q- == 0
coefticients Pil*m must form a constant isotropic tensor (as is the case for eqn 10). Thus,
coefficients Pil*m exhibit stress-induced anisotropy, in the sense that the quadratic form
Pi/ItIIt dEijd~ is invariant with regard to the direction of d~ii only if the material is stress-free.
The simplest candidate for practical characterization of a material will be the case where the
founh-order tensor PiIkm is given as a linear isotropic tensorial function of O'ijo Then,

(23)

or, as a special case,

(24)

where Po, . .., p,," constants, and deh de2, de3 = principal deviatoric strain increments. The first
expression can be shown to correspond to the most general symmetric form of·a fourth-order
tensor, piIkm,linear in O'IJ (as known from hypoelasticity[32]). The second exprenion, eqn (24),
is the most pneraI form which is independent of volumetric components dea. and O'M. as millat
be reasonable to assume for many materials (see the arlUlDents in Refs. [3] and [4]). With eqas (23)
or (24), the inelastic stiffness locus becomes a quadratic surface, which would appear in any
two-dimensional cross section of strain space as an eUipse, parabola or hyperbola (FIB- 7a).
However, the latter case in which the quadratic form in eqn (24) becomes hyperbolic is
inadmissible for it would give imaginary dt". As a remedy, de would have to be set equal to zero
whenever it would be obtained as negative, which is equivalent to imposina an unJoedinacriterion
(Fig. 7b). Nevertheless, it is possible to choose such PI that ensures ellipticity ofeqn (24) for aU
stress states expected to be sustained by the material. This is achieved by choosing J+Plls_' ...0
or PI" -I/Ismaxl where Sma~ is the principal value of Si; which is largestin absolute value arnotII all Sii

expected to occur. .
Equation (24) describes an ellipse located symmetrically about point A It gives diferent

522'
eu

(a) (c)

F'1I. 7. Inelastic stiffness locus for endochronic tbeory with ltreIHDduced IIIiIocropy (a); widlllllloldina
criterion (b); and with piecewise.JiDear iDtrimic dale iDcreIDeatJ (c).



700 Z. P. BAlANT

(25)[
1 ]1/2

df == 2deil deij .

plastic hardening moduli for loadings to the side and straight ahead, but the same moduli for
straight-ahead loading and unloading. The latter feature is questionable, and it can be removed
by a difterent type of stress-induced anisotropy:

[
1 ]In

d~ == 2(dtjl + POSil dfHdeiJ + POSij d~') •

For this expression, the inelastic stiftness locus is a circle which is not centric about point A but
is shifted towards the origin (Fig. 7a), giving smaller inelastic strain for unloading as compared
to loading.

Alternatively, of course, df could be defined so as to give a locus of deij that is piecewise
linear (hyperpolyhedron). An example is the inelastic stUfness locus in Fig. 7(c), for which,
e.g. df == ald'll + bld'zl + clde]j, where de), dez and de] must be the principal deviator strain
increments in order to satisfy the tensorial inv~ce restrictions, and a, b and c depend on Silo

In such a case, the inelastic stiffness locus becomes similar to that for certain vertex hardening
models. Conversely, it is possible to construct plasticity-type formulations with vertex harden
ing for which the inelastic stilness locus approaches that for the usual endochronic formulation
(eqns 9 and 10) as closely as desired. This is obtained when the set of all orientations of deil
(directions a), is subdivided into many cones (hypercones in the full strain space, and angular
segments in (den, den> space). Within each directional cone, linear incremental equations are
used, givipg a piece-wise linear inelastic stiffness locus (describing a hyperpolyhedron). In the
limit for the number of direction cones approaching infinity, this locus approaches a smooth
surface characteristic of the endochronic theory.

8. REMARKS ON MATERIAL STABILITY

One property which is intimately connected with loading to the side and vertex hardening is
the question of material stability and unstable strain localization(28, 29, 26]. Due to the fact that
loading to the side produces inelastic strain, the material response to the side is "softer" than it
is for the classical plastic formulation, and this can be expected to have a destabilizing
etlect[26,27]. For Rudnicki-Rice type vertex hardeniq, which gives inelastic strain for vectors
deij that are parallel to the yield surface, Drucker's postulate is not satisfied and stability of the
material is not paranteed. While some materials are stable, most materials must indeed be
expected to violate Drucker's postulate and the normality rule at sdlcieatly larae strain, and
permit material iDstabiIi1ies (26, 29]. An important example is the class of aeo&oFallQterials,
such as sands, clays, rocks and concrete. In these materials, the inelaatic strain depends on
friction, and in such a case the normality rule and Drucker's stability pos&ula&e do not
apply (20, 33]. Micro-fracturinl in these materials, and the inherent dilatancy, are UIldoubtedly
also SQurces of polllible miUerial instabilities.

Recently, it bu been shown that these phenomena give rise to behavior wbich is ap
proximately modeled by vertex hardenilll, and that the vertex harden.iaI bas a profound
destablizina effect, promotina instabilities in the form of a localization of a strain in a narrow
band(26, 27, 29].

Material instability is also caused by strain-softenina (34], which is known to exist in
concrete, rock and soils, as recent tests in tension, compression and torsion inclicate. Strain
softeDing can only be observed on specimens of micro-inbomogesoous material wijcb are
sufficiently small to prevent unstable strain-localization and are loaded by a sufticiently stift
displacement-controUed testing machine. Strain-softening is not allowed by Drucker's
postulate[231, but is admitted by an analogous approach, called fracturing material theory[3S
37]. Agreement with experimental data on strain-softening has so far been obtained only with
the endochronic formulation [8].

Thus, it is clear that for materials which do exhibit unstable strain localization, or
strain-softening, such as geological materials, the endochronic formulatiol\, compared to
plasticity with a smooth yield surface, stands at the proper place of the scene-it does allow
plastic strain at loading to the side, similarly to the vertex hardening models, and it does allow
strain-softening. With classical plastic formUlations satisfying Drucker's stability postulate,
such etlects. if they exist. are inevitably missed.

On the basis of microstructural polycrystalline models[31l, it has been found that already
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for a relatively small strain the current zero-offset yield surface, representing an envelope of all
points which can be reached from the current state without causing inelastic strain, shrinks
almost to a point. The point is equivalent to an infinitesimal circle, and precisely this happens in
endochronic theory. This fact serves as a physical justification of the endochronic theory.

The fact that for loading to the side the endochronic formulation gives generally a softer
response (lower stiffness) than plasticity means that the model is more prone to indicate
instability. Thus, the endochronic formulation is on the side of safety in case of stability
predictions, whereas classical plasticity is, among all possible inelastic constitutive relations,
the least conservative and the least safe model that can be assumed if test data are inconclusive
as far as the choice of the type of constitutive relation is concerned. On the other hand, vertex
hardening models are still more prone to indicate instability because for tangential loading they
exhibit inelastic strain components in the tanaential direction while the endochronic inelastic
strain is entirely in the straight-ahead direction. Thus, it might be appropriate to incorporate
into endochronic theory some vertex hardening features, e.g. the model of Rudnicki and
Rice [26].

9. RELATIONSHIP TO DEFORMATION THEORY OF PLASTICITY

A simple prototype of Hencky's deformation theory of plasticity is given by Nadai's
stress-strain relation [24, 25]:

'1/ =!(N')eij (26)

in which N' =O/2)lqSlI =f2 =second invariant of stress tensor till- Prqer and others have
shown that this type of formulation has certain serious deficiencies, such as indepeDdeoce from
the loading history [24, 25]. On the other band, from experiments it is known that the defor
mation theory happens to give better predictions than the incremental theory of plasticity (eqns
1-4) in many cases, one of which is loading to the side[38].

To discuss loading to the side, eqn (26) may be differentiated:

(21)

Consider now a state in which SlI and ell are DOn-zero, all other I" and e" beiDa zero. The
straight-ahead (radial, proportional) loading is here represented by dell, and the IoIdiDa to the
side is represented, e.g. by den or by del2. The corresponc:tiaa stress iDcreIIlents, Un or d1J2,
are obtained from eqn (27) as dSn =!(N') den and d,u -!(N') del2' Thus, the taDlDt modulus
for loading to the side is less than the elastic modulus and equals the current secant elastic
modulus [38].

In the present context, the foregoing result means that in the deformation theory there exists
inelastic strain for loading to the side [38], ~hich is a type of loading for which the deformation
theory often gives good qreement with experimenL This is in similarity to vertex bardeniD&,
and partly also to the endochronic formulation, and in contrast to classical plastic formulations
(eqns 1-4), which give purely elastic response at loading to the side.

10. ENDOCHRONIC KINEMATIC HARDENING AND
OTHER LOADING FUNCTIONS

The endochronic formulations used so far (sueb as eqns 9 and 10) correspond to isotropic:
hardening, and so does the plastic formulation in eqns (lH4). This is because det - 'II 

aJ{1a'II where N" =const. characterizes in plasticity theory a yield surface which is always
centered at the orisin of stress space (Fig. 8) and dilates while retainina the same .....

So, it may be of interest to identify a counterpart of anisotropic bInIeniDa ru1es known from
plasticity, especially kinematic bardenina. Here, the yield surface not oaIy dilates but also
moves as a rigid body. Considering, e.g. Prager's kiDematic bardeniDa I1IIe[24,25], an anaIoaous
generalization of eqns (9) and (10) would be obtained by deriving det from a loading function F
which, in addition to expanding radially (isotropic bardeniDg) also moves as a riaid body
(kinematic hardening). Thus, adhering to von Mises-type loading function for deviator defor-
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FJI. 8. Endochronic kinematic hardening.

mations, the endocbronic loading function from eqn (11) may be generalized as

and according to eqn (11), eqns (9) for q =1 are generalized as

(28)

dEpi =dA. =dg(~~ ao) d'. (29)

Coefficients a/lo ao (with elM = 0) indicate the current center of the loadina surface.
One could, of course, further speculate on the rules for the incremeats dall and dao as

funetiou of d-., dull aad dt For example, similarly to Shield and Zietler's bardeniDa rule in
plasticity{24. 25],

da
"
=k, dIrt =2Gk, deft, (30)

where ko and k, are constants and 0 .. k, .. 1 may be expected. (According to a private
communication by C. L. Shieh of Northwestern University, the use of k,- 0.15 and ko =0
distincUy improves the fits of asylD8lCtric hysteresis loops for highly strained concrete.)
Equation (30) yields pure isotropic hardening for ko = O.

For the eDdocbronic formulations corresponding to a Maxwell chain model(8, 14], a cor
~poncliDa pnenlization would be to use de( =("'I,. - 2G,.k, dell) d,-, subscript II- referring to
relaxation time 1",..

Reftneme8tS within tile isotropic loading functions are also possible. For example, it seems
that a somewhat ~ved description of concrete is possible with F(tTlI) =
]2 + cJll3 +g(tT) - H, where J) ="""'''rtpS,.../3 = third invariant of SIr Equation (11) then yields

(31)

However for a clear answer one needs more accurate test data than are available at present.
In endocbronic theory there is, however, one important practical dilerence in hardening

rules as compared to plastieity theory. This is due to the fact that in plasticity there exists the
property that all stales within the current yield (loading) surface can be reached without
inelastic straining, while in endocbronic theory no state can be reached .in this manner.
Therefore, points of the loadiDa surface which are at a finite distance from the current state A
(Fig. 9) are irrelevant for the endocbronic formulation. The only relevant property of the
loadiDg surface is the local curvature of the loadiq surface at the current state A. This
curvature is reftectecl in the current location a" of the center of the loading surface. In the li&ht
of these considerations, it seems that the absence of yield surface in the plasticity sense might
be a useful and simplifyiq feature of the endocbronic theory. It makes it possible to cease
worryina·about the entire current loading surface and reduces attention to the local properties
of the current loading surface near the current state.

10. TANGENTIAL LINEARIZATION OF ENDOCHRONIC FORMULATION

The stress-strain relations of incremental plasticity are linear in stress and strain incre
ments, and therefore it is possible to relate the increments dtTi; and dEl; by a matrix of tangential
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Fig. 9. Tangentiallineari: :ation of the inelastic stillness locus for the endochronic theory.

moduli, D1j/un; i.e. [24]
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(32)

For the plastic formulation in eqns OH4). D/JIufr == D"" - D'-. where D"" ==
2G8u.8jm + (K - 2G/3)8q8hft, and ,D{'k, is given by eqn (IS). As will be seen. for the endochronic
formulation moduli D1j/un can be expressed only if the direction of vector d. (or d.1j ) is known.

In analyzing material instabilities, it may often be necessary to linearize the incremental
stress-strain relation so as to obtain an eigenvalue problem. For this purpose, the curved
(circular) inelastic stilness locus of the endochronic theory must be reptaced by a plane (or a
straight line) which is tangential to the curved locus at the point of assumed strain increment
direction, de., = b.,; see Fag. 9. The linearized formulation will then be equivalent for all delj
directions which are sufficiently close to deq II: blJo So one must replace (deq dtJ2)I12 by a
linear expression which represents, for fixed dt, a plane that is normal to vector b1j in the
six-dimensional strain space; i.e. dt == kb . de or dt =kbl/ deq. Constant k must be such that for
de'l II: bij the correct value of dt be obtained. This requires that dt =(bhftbhft/2)I12 =kb...b....
which yields

(33)

The tangential linearization can, of course, be also obtained without resoning to geometrical
considerations. Let deij == bll +PII where tensor Plj is small compared to bijo in the sense that
IbiIPlJl-e b.,bl/o Noting that (I + 8)112 ... 1+ 8/2 if 8 -c 1, one may arrive at eqn (33) by the foUowing
transformations:

(33a)

A similar linearization may be applied in the general endochronic theory to the expression
dt =(P/lkl dEli dEti )112.

Substituting eqn (33) into the stress-strain relations of endochronic theory, the formulation
becomes equivalent to plasticity without normality. If eqn (33) is substituted in eqD (10) or (II).
one obtains a plasticity formulation which is identical to the endochronic formulation for the
cases of proport;o1lll1 (radial) loading. e'l == AijI. Here

(34)
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where Aij are given constants. and BII is also a constant. Furthermore. assuming that the test
data available are essentially of the proportional loading type. for which bij - eij, the substitu
tion of

in the endocbronic formulation should allow (for any f3o) an equally good fit of test data.
Moreover. parameter fJe in this expression allows the ratios of inelastic strain at loading and
unioadina to be controUed.

Having linearized the incremental stress-strain relations. it is possible to put them in the
form of eqn (32) and express the fourth-order tensor of tangential moduli D,/km' For this
purpose. eqn (33) for d~ may be substituted in eqns (9) and (10). yielding

(36)

Insertion of dull • dSII + 8,1 du,.,J3 and rearranaement yields

(37)

Subsequently. introducing de" =: d." - 8" d.,,J3 =: (8tA.. - 81un8,,/3) dlft",. one obtains an equa
tion of the form dUll =: D"a. dlft", (eqn 32) in which

To illustrate the linearization. consider a simple endochronic formulation for a material with
only two stress-strain components:

(39)

where Ell. En. E lz• E:u are elastic moduli. F =: constant. and the square-root expression
corresponds to de from eqn (to). Assuming that the strain direction is (1.0) or dEtI > O. dEn =0,
one has BII =: 1. Bn =: 0 and (dE11 +d«WII2

- Btl dEli =dEli near the assumed direction. Equa
tion (39) maytben'be brought to the form

(40)

On the other hand. if the strain direction is assumed as (0, 1) or dEn> O. dEli =0, one has
B'I =O. Bn =: 1 and (dEtI +dEh)lf2 - Bn dEn =dEn near this assumed direction. Equation (39)
then becomes

(41)

When the loading path is smooth, then the direction dEij in each loading increment can be
based on the direction in the preceding increment. However, when the loading path forms a
sharp corner (paths AA h AA2• AA) in Fig. 2). and this must always be assumed in analyzing
material instability. then the direction bit of dEij is unknown.

The dependence of D,/km on the unknown direction of de;; will undoubtedly cause difficulties
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in numerical analysis of material instabilities by finite elements. However, for the plastic
formulations the situation is partly similar, in that the matrix DjjIutJ is different for loading and
unloading. For some types of vertex hardening, different matrix ~Jt1 applies for several
segments (cones) of directions: unloading, loading straight ahead, loading to the left in
(ell, e22)-plane, loading to the right in (ell, e22)-plane, etc.

12. STABILITY, UNIQUENESS AND CYCLIC LOADING

It has been known since their inception that the endochronic formulations violate the
normality rule and Drucker's stability postulate. On the basis of this fact it has been suspected
in a recent critical study[39) of the endochronic formulations that they could lead to numerical
difliculties, especially in cyclic loading; and it was concluded that the endochronic formulations
may, therefore, be unsuitable for numerical structural analysis. In this respect it must be noted,
however, that the violation of Drucker's postulate per se cannot be objected and is even proper.
It is well established that unstable materials and strain-softening materials do exist and are quite
common. It is, in fact, of main interest to detect situations when this is not so. Various studies
of unstable strain localization and of vertex hardening are motivated by efforts to reveal
material instabilities. It is the purpose of structural analysis to predict such phenomena. When
an instability is encountered, the numerical algorithm cannot be stable, and convergence cannot
take place. Thus, tbe aforementioned numerical difficulties might often be just an indication that
material instability has been reached. For materials which are suspected of developing unstable
strain localization, or which are known to exhibit strain-softening, it is actually imperative not
to use a formulation which satisfies Drucker's postulate, or else real instabilities could be left
undetected in the numerical calculation. In view of tbis, and because endochronic formulations
are "softer for loading to the side", they will yield more conservative (safer) designs than
plasticity formulations.

However, it must be admitted that there is at present little experience with the use of
endochronic theory in finite element codes. Some numerical difficulties which have nothing to
do with actual material instability, i.e. with the question of validity of Drucker's postulate,
might be found, and methods to cope with them will then have to be investigated.

The feature of theendochronic formulation which has been repeatedly criticized in
discussions at technical meetings and is also elaborated upon in Ref. [39) is the fact that
inelastic strain can be getting continuously accumulated without bounds if a cyclic loading of
arbitrarily small amplitude s is superimposed on constant stress C1o, with the result that
instability of response and lack of uniqueness may occur. However, the choice of the precise
nature of the stability and uniqueness condition is debatable, and so a reexamination is in order.
Like in Ref. [39), let attention be restricted to uniaxial behavior, and consider the uniaxial
endochronic formulation[8, 13J:

-sd( - !(."l' (42)

in which !(",) =hardening function[3,4,8) and F(£) =softening function[4,8), which are non
decreasing continuous functions of "I and E, respectively, and C1, E now are the uniaxial stress
and strain. (The subsequent analysis could also be applied to the endochronic formulation given
by eqn (42) with dl =jdC1l, which was introduced in 1969 on pp. 70-71 of Ref. (40).)

Consider now a pulsating load in which the stress is prescribed in the form C1 • ao + s sin lIJI,
where t is a loading parameter. Let the strain produced by static load C10 at 1 =0 and 0 < S <C C10

be denoted as Eo- Because for s"'O the pulsating stress is physicaJly equivalent to static stress
C1g, uniqueness and stability requires that the response £(1) approach in some sense the value Eo
produced by static stress C10 alone. However, it is arguable precisely in which sense this
approach must take place. The following three different conditions of uniqueness and stability
may be considered:

I£(t) - E~ < 8 for all t and some (sufficiently small) s (43a)

(43b)
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lim [E(t) - Eo] = 0 for any given t
.-0

(43c)

where Ii is a given arbitrarily small positive number and Eo is the value of Efor u = Uo at t = O.
The first condition, eqns (43a), is a strict stability condition of Liapunov type, like that used in
dynamics. The second condition is a weaker one, and the last one is merely a continuity
condition, which is required for the problem to be properly posed and is the most reasonable
condition from the physical point of view.

Althouah none of the endochronic formulations guarantees fulfillment of the strict condi
tion, eqn (43a), unless an unloading criterion is introduced, all endochronic formulations satisfy
eqn (43c) and some also satisfy eqn (43b). To show it, integrate eqn (42). It is easy to check that,
for Uo> S > 0,

0'0 - S Uo + S • _ ('.E..!L
-ycl»r < E(t)- Eo<-ycl»t With cl»r - Jo 1(1/) (44)

in which cI», is a continuous non-decreasing function of 1/ =1/(t). For the pulsating load given

(45a)

where

(45b)

in which 1/0 =constant, E, is the initial tanaent modulus at t =0, and Ell is tbe initial unloading
modulus at t =O. The inequality ensues from the fact that as pulsation apes on the hardening
function causes the current tangent loading modulus to increase and the current unloading
modulus Ell to decrease, while always E, < E < Ell (see Fig. I).

Sin~e cI», <fa(st) wbere I. is an increasing continuous function, with 11(0) =0 and bounded
for finite st, it follows that lim cI», for s -+0 at any fixed t is O. According to eqn (44), this means
that the weak condition in eqn (43c) is always satisfied.

According to eqn (45a), lim 1/ for t -+ 00 is 00, and, in consequence, the stronger stability
condition in eqn (43b) is satisfied if lim cI», for t -+00 is bounded, Le. if the inverse of the
hardening function f(1/) is intqrable up to 00. This is not true for Valanis' hardening function [3]
f(1/)=l+fj\1/, for which cI»,=(l/fj\)ln(l+fj\1/)+constant. Equation (43b) is satisfied,
however, if

1(1/)EitA1/"'. m> 1, for sufficiently large 1/,

where A is some constant. This is true, for instance, if

(46)

(47)

which is the function that bas allowed improvement in fits of cyclic test data(8}.
The strict stability condition (eqn 43a) could be satisfied only if lim cI», for t -+00 and fixed s

approached 0 as s -+ O. This would require that lim 1/ for t -+ 00 approached 1/(0) as s -+ 0, and
according to eqn (45a) this is never true because lim 1/ for t -+00 is 00.

Another case studied in Ref. [39} was the pulsating strain. Thus, consider that E(t) =
Eo + e sin bit, with 0< e -e Eo. Rewriting eqn (42) as du + u d( = E dE. it is seen that Au + urA( "'"
ofor each pulsation cycle, and so (for e <C Eo) the response is stress relaxation of the form:

u(t) "'" uo exp (-lilt) (48)

in which cI», is again given by eqn (44) and e, = keto with k =2wl1r. Further arguments are similar
as before and the conclusions are the same, except that u(t) always satisfies not only the
condition of the type of eqn (43c), but it always satisfies also the stronger condition, eqn (43b).
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For comparison, consider now a typical, classical formulation of viscoplasticity. Its simple
uniaxial form may be written as dE = dofE + .(u)u dl with l#1(u) = 1+ ,",2, k >0. The response
to static stress u(I) =Uo applied suddenly at I =0 is E(I) =Eo + ~uo)I, with Eo =uo/E. Assuming
that u > 0, E> 0, the response to pulsating stress u(1) =Uo + s(l + sin eJI), s > 0, satisfies the
inequality:

EO+ "'(uo+ s)1 < E(I)<Eo+ ~uo+2S)I. (49)

Thus, the difference between the responses to static and pulsating load is E(I) - Eo =aI, where
0< r/J(uo+ s) - r/J(uo) < a < r/J(uo+ 2s) - I/I(uo). Since E(I) - Eo grows'beyond any bound, only the
condition in eqn (43c) is satisfied. However, the stronger conditions in eqns (43a) and (43b) are
not satisfied. If this is admissible in classical viscoplasticity, it must be admissible in endoch·
ronic inelasticity.

In viscoplasticity, the strict stability condition in eqn (43a) becomes satisfied in the limit of
infinitely rapid deformation, i.e. if w -+00, making the response perfectly elastic. If desired, the
endochronic theory, too, can be formulated so as to make the response for w-+ oo as close to
perfect elasticity as one pleases. To this end, it suffices to use a time-dependent endochronic
formulation associated with a Maxwell chain model [8, 14] whose shortest relaxation time is
sufficiently short compared to the oscillation period.

Fulfillment of the strict stability condition in eqn (43a), if deemed desirable, can be achieved
also in other ways. One other way is to incorporate into the endochronic formulation an
unloading criterion. This is not at all against the spirit of endochronic theory, as the absence of
the unloading criterion is not the essential feature of endochronic theory, anyway. (Rather, it is
the curvature of the inelastic stiffness locus.) As an alternative way, eqn (43a) may be satisfied
by making hardening function f(,.,) depend on the energy dissipated up to current time, D, is
such a way that a certain value of D depending on It") could not be exceeded.

The violation of uniqueness and stability requirements was suggested in Ref. (39) to give rise
to serious numerical difficulties and preclude the use of endochronic formulations in practical
numerical analysis of structures. However, within the context of eqn (43c), the physically
reasonable condition, this could be true only if w were arbitrarily large; but this is impossible,
because w can never exceed the first fundamental frequency of the grid used (not even for a
step load history). In a continuum, w can, of course, be arbitrarily large, but then a time
dependent endochronic formulation based on Maxwell chain with a sufticiently short first
relaxation time should properly be used. Moreover, the period of oscillation of the grid due to
numerical error would be very short, probably shorter than the time step used, in which case
the oscillation could not be reflected in numerical solution.

Therefore, the claim of innate numerical unsuitability of endochronic formulations [39)
appears to be an exaggeration.

13, UNLOADING, RELOADING AND NON·VISCOUS HYSTERESIS

By contrast to plasticity, the response curves for the ordinary endochronic formulations
(eqns 9 and 10) exhibit at the start of unloading a slope that exceeds the current elastic modulus
E. For metals, experimental data clearly contradict such behavior. However, for geological
materials the interpretation of experimental data is not clear because the current elastic
modulus E gets reduced by microcracking, as compared to the initial modulus Eo, which causes
that the unloading slope which does not exceed Eo mayor may not be higher than E, depending
on the value of E.

However, if a reduction of E due to microcracking is not considered, or if it is too mild, it
may be appropriate to introduce an expedient combination with plastic formulations, in which
an endochronic unloading criterion is postulated and strain dE't/ is either reduced or completely
canceled whenever unloading occurs. Some unloading criteria have already been suggested for
endochronic formulations: dJit) < 0[8], and S~' de't/ < 0[11]. Valanis' concept of internal
barriers [12] is also a form of an unloading criterion. When d~ is taken as zero for unloading, the
inelastic stiffness locus for the endochronic theory assumes the shape of a "bulge", as shown in
Figs. 5(b) or 7(b). With such a criterion the endochronic formulation can be made to satisfy
Drucker's postulate.

ss Vol, I., No, 9-B
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Consider now again cyclic loading, directing particular attention to the work Jl W dissipated
due to non-viscous (rate-independent) hysteresis during unload-reload stress cycles of arbi
trarily small amplitude s. This work consists only of second order terms Jl W = dUii dEYi

I
/2

because the first order terms Uti dEYiI cancel with the work of applied loads, owing to the
principle of virtual work. Although there is no fundamental necessity to satisfy the condition
Jl W ~ 0 (Drucker's postulate), it may be reasonable to do so, especially at lower stress levels,
unless there is some good reason against it (e.g. when a release of frictionally blocked elastic
energy is expected due to friction reduction). The ordinary endochronic formulations (eqns 9
and 10) violate this condition, because for the unload-reload cycle Jl W is negative (being
represented by the cross-hatched area 123 in Fig. 10)[39]. Classical plasticity, as well as the
afore-mentioned endochronic formulations with unloading criterion, gives Jl W =O. This
satisfies Drucker's postulate but does not permit representation of cyclic strain accumulation
(cyclic creep, "ratcheting"). This is a rather important phenomenon, whose mechanism cannot
be explained by plastic slip (and calls for other effects, such as the "ratchet effect" [40-42». So all
existing formulations are inadequate.

(a) ( D)

F,," 10. Small cycles stress or sttain superimposed on static stress or sttain.

To model cyclic strain accumulation, the end point of the cycle (point 3 in Fig. lOa) must be
to the right .0{ the startiDa point of the cycle (point 1 in Fig. lOa). Obviously, the only way to
obtain this and yet satisfy JlW .. 0 for arbitrarily small amplitudes s is to meet these conditions:

(1) At the start of unloading (point 1), as well as at the start of reloading (point 2), dE~ may
not be of the opposite sian as dEl;"

(2) Inelastic strain of the same sign as dE/I must be produced right after the start of
unloadilll and apin right after the start of reloading.

(3) Curina reloading the inelastic strains must be more pronounced than during unloading,
but less pronounced than during virgin loading.

These conditions can be met as follows. Conditions 1 and 2 require the use of kinematic
hardening, such that ali (center of loading surface) (eqn 29) is set equal to Sl; at the start of
deviatoric unloading and apin at the start of deviatoric reloading; and similarily aD is set equal
to 000 at the start of volumetric unloading or reloading. An unloading-reloading criterion must,
therefore, be introduced. This criterion can neither involve only stresses, for strain-softening
may not be interpreted as unloading, nor can it involve only strains, for in symmetric hysteresis
loops the return branch would make the transition to virgin loading too late. This fact, along
with the fact that Drucker's postulate[22] is concerned with work, suggests that the criterion
be expressed in terms of internal volumetric and deviatoric work Wand W', defined as

dW = 300 dE. dW' = S/; del;. (50)

The inelastic strains from eqn (9) may be redefined as

detl = (Sii - ai/)e' d{ (51)

in which

(1) fordW"Oand W= Wo: c=l
fordW' .. Oand W' = Wo: e' =1 (virgin loading)

(2) fordW<O: e =c.
fordW'<O: c' =e~ (unloading)

(52a)

(52b)
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(3) for dW;;;Ji=O and W < We:
fordW';;;Ji=Oand W'< Wo:

c = c,
c =c ~ (reloading) (52c)

with 1tll e, < c., 1tll e~tI;; e~; Wo and Woare the maximum values of W and W' attained up to
the current time. Coefficients Gil or Go are set equal Slj whenever ds~ deli or dO'pI dE becomes
negative, which assures that each of these expressions always remains positive (lJ'iushin's
postulate). (According to a private communication by C. L. Shieh, this formulation works quite
well for cyclic loading of concrete as well as sand.)

Consider now the uniaxial equivalent of eqns (50) and (51):

(53)

where G is the current center of yield surface, corresponding to Gil, Go, and function q, is added
as it is useful to control the dissipated work during the cycle. (This form has a multiaxial
counterpart in setting q =(m + 1)/2 in eqn (28) for the loading function.) The second order work
dissipated during an unload-reload cycle is AW = AWI - 4 W2 where 4 WI and 4 W2 are the
areas shown in Fig. 11. For a very small amplitude s, AW may be easily calculated from eqn
(53), because F, j, and E may be considered constant during the cycle. Equation (53) for the
unloading branch as well as the reloading branch may be written as du =E(1- aU"') di in
which u=0' - Go, E=E - Eo, a =eR[E at the beginning of the cycle, Eo =strain at the beginning
of the unloading branch. For small u this equation is equivalent to di =(1 + au"') dU/E. The
area W above the unloading curve or below the reloading curve satisfies the equation
dW=udi = (1 +au"')u dUlE. Integration of these two equations yields

(54)

Superimposing the strains and the areas for the unloading and reloading branches, one finds that
the net strain increment and the dissipated work for the unload-reload cycle (Fig. 11) are

A =F(e,-c.)(2 )"'+1
aE E(m + 1)[ S ,

4 W 2F ( e,) (2 )'"
WI = (m + 2)[ ell - m + 1 s (55)

in which WI =(2s )2/2E =elastic work of u during reloading.
It is now evident that cyclic strain accumulation will occur if CII < e,. To also ensure that

4 W ;at 0, it is necessary that

ell < e, ~ (m + I)e... (56)

This is the condition under which an inelastic constitutive law exhibits cyclic non-viscous
strain accumulation, yet satisfies Drucker's postulate. This condition is of general validity,
because for small enough s the loop can always be approximated by power curves, for any
constitutive law.

The ratio AWI WI characterizes non-viscous hysteretic internal damping. Equation (55) for

E

POd r .--I--'fIr'y...,
curves

Fig. 11. Cyclic creep with smaIl hysteresis loops for positive eDeI'IY cliIaipation.
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.1E seems to give best agreement with Whaley and Neville's test data on cyclic creep of
concrete if m == 2/3, although m == 1 is also acceptable.

It can be shown in the same manner as before that the present formulation again satisfies
only continuity condition (43a), and possibly also (43b), but not the Liapunov-type condition
(43a), despite the fact that Drucker's postulate is not violated by the cyclic response. The
opposite case, in whicb a frictional material is Liapunov-stable yet violates Drucker's postulate,
has also been pointed out(33]. Thus it must be concluded that Drucker's stability postulate is
not a reliable indicator of Liapunov-type stability.

The preceding treatment of hysteresis can be readily adapted to plastic formulations using
tbe tangential linearization (eqn 33).

14. INELASTIC STIFFNESS LOCUS FOR FRACTURING MATERIAL_

The strain-softening, i.e. the decline of stress at increasing strain, as commonly observed in
geoloaical materials, is very hard to model in terms of plasticity theory. Even the modeling of a
limit state, in whicb do1dE-+O, is difficult. One suitable formulation for limit states and the
subsequent strain-softening is the endochronic formulation. However, another possible formu
lation which is similar to plasticity has been recently proposed simultaneously by
DoUlill[3S,36) and by Nagbdiand Trapp(37). Dousill assumes that 0'11 ==~ where DIJItm
are the elastic moduli wbich decrease as the strain grows, D,,.,,. == D,,.,,.(E,,), so as to model the
effect of microcracking in an inhomogeneous material. By differentiation this yields

duff == -dDr,.".l!a.. (57)

The main question now is how to determine dD,,..,.. To this end, Douaill postulates a "fracture
surface" F(l!q. Hie) == 0, which is defined as an envelope of all states Ell which can be reached
from the current state without further fracturing (microcraekina); Hie are fracturing parameters.
Choosing (aFfaH,J dHIe to be negative when fracturing occurs and noting that dF ==
(aFfal!jj) dEli + (aF7aHIe ) dHIe == 0, it is clear that

(58)

when fracturing occurs and aF7~j .. 0 when it does not. Consequently

(59)

where gil are some constants. Now, imposing Il'iushin's postulate [3S, 37), duff dl!IJ ;;110, which is
a complementary form of Drucker's stability postulate, and comparing this with eqn (58), it
foDows that duff - -aF7~jo Furthermore, comparison with eqn (59) yields glj - -aF7~it and so
one may set

(6Oa,b)

For a dilatant pressure-sensitive material, a suitable form for F is here proposed to be
F(EI/) == .y + h(E) - H.. with r == (el~iP2)1f2. For this case eqns (6Oa,b) yield

d /, J.., dIe
S i/ == ~i/ 2.y'

1
dol' == - aq, dIe

3
(61)

(62)

where q, is an empirical coefficient, which can depend on O'i/ and Eljo a' == dh(E)/dE and a == a'
according to eqns (6Oa,b). Similarly as for the elect of internal friction on plastic shear, it is
possible that shear fracturing depends on volume change or E. Then, a ~ a', and the normality
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rule, expressed in eqn (608), no longer applies for volume changes. For cyclic loading it seems
appropriate to introduce kinematic hardening by replacing Eij with Eij - ail in the expression for
F.

To compare the fracturing material formUlation with other formulations, it is of interest to
determine the inelastic stiffness locus, defined again as the locus of the end points of all vectors
dEij which give the same duff. Ac:c:ording to eqn (608) it is necessary that dK be constant.
Hence, according to eqn (6Ob), the plastic stiffness locus is a plane (hyperplane), which appears
as a straight line in a two-dimensional picture. The plane is oriented tangentially to the current
fracture surface except in case of eqn (62) where for a';" a normality is not satisfied in the
volumetric cross section.

Thus, the inelastic stiffness locus is the same as in plasticity theory, and the difference
consists only in the facts that hardening is governed by strain rather than stress and that elastic
moduli decrease rather than being constant. So, the fracturing material theory as described here
exhibits no inelastic: strain for loading to the side, whic:h must be questioned when material
instability is to be investigated.

15. CONCLUSIONS

(1) A meaningful way to compare the endochronic and classical plastic formulations is by
studying the locus of all strain increment vectors which give the same magnitude of inelastic
strain increment, called inelastic stiffness locus.

(2) For classical plasticity the inelastic stiffness locus is a straiaht line, whereas for the
endochronic theory it is a circle or a sphere, and for its refined versions it is an ellipse
(ellipsoid) or a buIae on a line. The basic difference of endoclironic formulations from
incremental plastic formulations consists in the fact that the inelastic stiffness locus is curved,
rather than straiaht. This causes that for a strain increment which is taIlIent to the current
loading surface Ooading to the side) the endochronic theory exhibits plastic strain, making the
response softer, while the associated or non-associated plasticity gives purefy elastic response.
The latter is in contradiction to the prediction of microstructural polycrystalline models, which
show that the current yield surface may shrink almost to a point or infinitesimal circle, as in
endochronic:theory..

(3) Endocbronic tbeoryis similar to the vertex hardening models and to the deformation
tbeory of plasticity in that the inelastic stiffness locus is not a straight line and that inelastic
strain accompanies strain increments tangential to the loading surface, while in plasticity the
response is elastic. Therefore, among all inelastic theories, classical plasticity is least prone to
indicate material instability.

(4) In endochronic theory as well as classical plasticity, tbe inelastic strain is always normal
to the loading surface, while in vertex bardening models it is not. Thus, endochronic formula
tion is stiffer than vertex hardening for strain directions parallel to the loading surface, and so
it is less prone to indicate material instability.

(5) The decision whether the plastic or the endochronic formUlation is correct is solely up to
tbe test data or a microstructural model for a given material. The classical plasticity formUlation
witb normality rule is the least safe assumption when the material is expected to exhibit
instabilities (unstable strain-localization) or strain-softening, and when one is interested in
finding these instabilities. The experiments which are most relevant for making the choice
between these two theories are not only unloading and cyClic loading but also Ioadina to the
side of the previous path in the strain space, and loading into the strain-softening ranae.

(6) For the loading surface and the hardening rules of plasticity, such as isotropic: and
kinematic hardening, one can define their counterparts in endochronic formulations; but these
are relevant only as far as the "local" hardening rule near the current state is concerned.

(7) It is reasonable to expect that the intrinsic time increments de exhibit stress-induced
anistropy, such that the quadratic form defining de consists of invariants of dEli only if the
material is stress-free. This type of stress-induced anisotropy distorts a circular inelastic
stiffness locus into an ellipse or an eccentric circle.

(8) While in plasticity theory it is possible to formulate the matrix of tangential moduli, one
for loading and one for unloading, in endochronic theory the matrix of tangential moduli can
only be expressed if the direction of the strain increment vector is known. Otherwise, the entire
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matrix of tangential moduli continuously depends on this direction, which is unknown when
material instability is to be analyzed. For proportional loading, the endochronic formulation can
be converted to equivalent non-associated plasticity formUlation.

(9) By contrast to plasticity, but similarly to viscoplasticity, the ordinary endochronic
formulations do not satisfy a stability condition of Liapunov-type, as is revealed by studying
the response to pulsatin,loads of small amplitude. This is because Drucker's stability postulate
is violated. and it must be so for materials which exhibit internal friction and microcracking.
Physically, however, only a continuity condition is justified. and this condition is satisfied by
endochronic formulations provided that the frequency of oscillating stress is bounded (which is
always true for finite element grids). Various refinements are possible to make endochronic
formulations satisfy the stronger stability condition andfor prevent unbounded accumulation of
inelastic deformation during cyclic loading.

(10) Introducing unloading and reloading criteria and kinematic hardening such that the
center of the loading surface is moved to the current stress point whenever loading reverses to
unloading or vice versa, the endochronic formulation can be made to satisfy Drucker's postulate
for hysteresis loops. while at the same time not guaranteeing Liapunov stability.

(II) The fracturing material theory in which the loading surface depends on strain rather
than stress is similar to plasticity in that the inelastic stiifness locus is also a straight line.

At;~~.•..•~by,tbeU,'.S. Nalional S<:ience FQundalion uuder Grants No. ENG75-t484, ENG75-22436 and
~G-I4848-AOI is~~ ..
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APPENDIX

ENDOCHRONIC THEORY AS VISCOPLASTICITY WITH
STRAIN-RATE DEPENDENT VISCOSITY

Consider the viscoplastic constitutive relation

(63)

in which t .. time; z was initially called reduced time [1.2] and is now better known as intrinsic time (3). In classical
viscoplasticity. the viscosity coeflicient, a. is a function of (f and possibly also f. However. as sqaested by Schapery[1.2),
generally d must be considered to depend also on the strain rates ~ which may be assumed in the form 4J .. II,(D'. f)4J~f).
If the inelastic strain develops gradually, function dM) may be expected to be continuous and smooth. Then'a "Taylor
series expansion is admissible: •

(64)

where r" some exponent to be determined later. The series will be truncated after the cubic terms. The linear and cubic
terms must be, however. discarded (PII .. PI/lurllHl ... 0) because they would violate the condition that a must decrease as leul
increases.

Funhermore. it is of interest to examine the limit case for infinitely high strain rate..~ ... GO. From eqn (64):

(65)

On physical grounds. for I«J ..... this ratio must tend neither to infinity nor to zero. The latter case. which represents
perfectly elastic instantaneous response. is obtained for 2- r < O. The former case is obtained for 2- r> O. Therefore. the
only possibility left is 2- r'" 0 or r'" 2. Equation (64) may then be rewritten in the form

(66)

Note that for a certain choice of PiJ/uft. the reduced time coefficient d is a non-neptive function of the tota1 octahedral
strain rate, as sUllICsted in 1968 by Schapery (p. 279 of Ref. [l]). The particular square root-type form. deduced here (and
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in Ref. (8)) from physically reasonable conditions. was the starting assumption of Valanis(3). Equation (66) may be
rewritten as

fx = [(t1Z'I)2+ (d;-'I)2]1/2,::!. d, = (Pifbt d'lI d'tM )112 (67)

in which 11t'1 = y'<Pe)/(l"'~,~, P/iA- =ZI2p/iA-laI2. Z, = conslllnt; 1". is a characteristic retardation time whose dependence
on ~ and! models clusic:al viscoplastic behavior. For rapid deformations. dOd'~oo. d, drops from eqn (67) and z = OZ"
which mabs eqlll (67) aad (63) equivalent to eqns (9) and (10). CoelBcieats Pi/IUII are variable. which may be most simply
described by a scalar hlrdcaina function of ,. as proposed first by Valanis(3).

The forqoina aulysis allows that encIocbronic theory is a special case of general viscoplasticity and the intrinsic time
is equivalent to the reduced time used in viscoplasticity.


