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Abstract—Endochronic and non-associated plastic formulations are compared by introducing an “inelastic
stiffness locus™, defined as the locus of all strain increments in the strain space which give the same
magnitude of inelastic strain increments. For classical plasticity the locus is a straight line, while for
endochronic formulations it is a circle, sphere or a quadratic surface (ellipsoid). Similarly to vertex
hardening models and the deformation theory of plasticity, endochronic theory gives inelastic strain for
strain increments tangential to the current loading surface, while plasticity gives perfectly elastic response.
However, in contrast to vertex hardening, the endochronic inelastic strain for tangential strain increments is
normal to the loading surface. Consequently, endochronic theory is stiffer than vertex hardening for this
loading direction and is less prone to indicate instability. However, it is softer than plasticity. Among all
possible constitutive relations, plasticity (without yield vertex) is least prone to indicate material instability,
and so it is the least safe model to assume if test data are inconclusive as far as the type of constitution law
is concerned.

Tangential linearization of the endochronic inelasticity is presented. The tensor of tangential moduli,
with all of its components, depends continuously on the strain increment direction in the strain space.
Endochronic analogs of the loading surface and of kinematic and isotropic hardening rules are indicated.
and stress-induced anisotropy of the quadratic form defining intrinsic time incremeats is formulated. It is
shown that for proportional loading an endochronic formulation can be readily converted to an equivalent
plasticity formulation. The fracturing material theory in which the loading function depends on strain rather
than stress is also analyzed and it is shown that its inelastic stiffness locus is similar as for plasticity.

Implications for material instability, and especially for stability of the response to pulsating loads of
small amplitude, are discussed. By contrast to plasticity, but sumllrly to viscoplasticity, the endochronic
inelasticity violates Liapunov-type stability conditions, but it meets a proper continuity ‘coadition.
Refinements 10 satisfy both are possible, but questionable if one deals with materials such as geological
materials, which are unstable or exhibit strain softening. Introducing unloading and reloading criteria and a
certain type of kinematic hardening, the endochronic formulation may be refined so as to model cyclic
strain accumulation yet satisfy Drucker's postulate for the hysteresis loops.

1. OBJECTIVE

Viscoplasticity with strain-rate dependent viscosity[1, 2], which has crystallized as endochronic
theory[3-19], is now receiving considerable attention and is being employed with remarkable
success for modeling the experimentally observed inelastic properties of certain materials,
expecially those in which the prevailing mechanism of inelastic strain is not plastic yield but
microcracking or grain rearrangements with separations, as is characteristic of geological
materials (soils, rocks, concrete){4,5,8-10,13-19]). Recently it has been discovered,
however, that certain new, more sophisticated, plasticity formulations are capable of modeling
the available experimental data for these materials nearly as well. Apparently, one faces a
situation where the problem of identification of the constitutive relation from the test data
available at present does not have a unique solution.

Therefore, rather than trying to fit further test data, an attempt will be made to compare the
types of three-dimensional response which various formulations give, and to determine what
are the essential differences between classical incremental plasticity (associated and non-
associated), vertex hardening plasticity, and endochronic inelasticity.

A reader who might expect this effort to involve a good deal of thermodynamics must be
warned that it will not be so. Application of thermodynamics provides for the constitutive
relations important restrictions, which have essentially been worked out both for classical
plasticity[20, 21, 11] and endochronic forms of viscoplasticity[l, 2,6, 7, 11, 12]. However, the
information furnished by thermodynamics is quite limited, and rather than further refining the
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rigorosity of thermodynamic treatment it seems to be more profitable to turn attention to thase
three-dimensional tensorial properties on which thermodynamics yields no information. These
are the properties which result from the microstructural mechanism of inealstic deformation
and are macroscopically manifested by the shape of the loading surfaces in stress and strain
spaces and the tangential stiffness for strain increments in various directions. Analysis of these
properties and their use for comparing endochronic and plastic formulations is the main
objective of this paper (based on report [10).

2. PROTOTYPE FORMULATION OF NON-ASSOCIATED
INCREMENTAL PLASTICITY

Recently it has become clear that plasticity of many materials, expecially geological
materials (soils, rocks and concrete), is not associated with the yield surface by means of a
normality rule and Drucker’s postulate{22-25]. The deviation from normality seems to be due
mainly to inelastic dilstancy and internal friction due to hydrostatic pressure. A simple way to
handle it is to begin with associated stress~strain relations and then relax normality only as far
as necessary, i.e. only as far as hydrostatic pressure p is concerned, as has been done by
Rudnicki and Rice{26, 27]. The resulting stress~strain relations may be written as

de; =def +def, de=de" +de” (1
with
[ 3P _.1.. " o o --L
defj = T ds;, de IK do 2
d 2 - 1
deff =3y "FE de” = 3 Bdu, 7= \/ (5 Smen) 3
For (d + 8’ de)/(2h) > 0:
du = Q‘f’.‘.”.ﬂ:‘_"ﬁ.‘ d# = :‘.9.-'..9_._‘.;'-9.; (4a)
2h 2F
for (dF + B’ do)/(2h) < 0:
du =0, (4b)

Here subscripts i, j, k, m refer to cartesian coordinates x; (i = 1,2,3); s; = a; — 8 0/3 = deviator
of stress teasor oy, o = ow/3 = —p = hydrostatic stress, &; = Kronecker delta, ¢; = ¢; ~ &€/3 =
deviator of (small, linearized) strain tensor €y, € = €u/3 = volumetric strain component, ¢, ¢},
€”, " = elastic and plastic component of ¢; and ¢; 7 = stress intensity; G, K = elastic shear
and bulk moduli, & = piastic hardening modulus, 8 = dilatancy factor, g’ = coefficient of inter-
nal friction. Parameters h, 8 and B’ are, in general, functions of oy, and eventually also ¢
When 8 = #', the normality rule is satisfied, and for 8 g’ it is not. If 8 = 8’ =0, equs (2)4)
reduce to Prandti-Reuss relations and are associated with von Mises-type yield surface.

For reader’s convenience, a brief sketch of the derivation of the incremental plastic
relations (2)-(4) for the case of normality (8 = B’). may be given. It is important to realize that
incremental plasticity rests on two basic hypotheses, which are reasonable but by no means
necessary. One basic hypothesis is the existence of a scalar yield function, F, such that inelastic
strain occurs if and only if dF >0{22] and F is independent of the inelastic strain. Equations
(1)<(4) correspond to the form

Flow Ho=#+2@-H=0. 7= /(3sm) )

where H, = hardening parameter. Choosing (8F/aH,) dHi to be negative when loading takes
place, and noting that (3F]doy;) doy; + (aFaH)IdH, = 0, it is obvious that doy(3F doy) > 0 when
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plastic hardening occurs, and do;(9F]do;;) <0 when it does not. The second basic hypothesis is
that the dependence of de?’ upon da;; is linear[22). Then, def ~ do;(aFld0;;) or

aF
def-}‘ =g 8—0: doim 6)

where g; are some constants. Now, adopting Drucker’s postulate do; def =0(22-25), and
comparing this inequality with the condition do;(3F/do;;) =0 for continued plastic loading, it
follows that de?’ ~ 3Fdo;. Furthermore, comparison with eqn (6) yields g; ~ 3Flday;, and so one
may set def =(dFdo;)du’ with du’ = (1/hX3Fld0ym) dowm. For the special yield function in
eqn (5), this may be written as

woOF , _ du o 9Fdu'_ 2,
def; 25, dp’ = s X de 3 BB dp )]
R NPT
dp = 5 (d¥+ g’ do) ®

where B' = dg(c)/do = friction coefficient, du = du'/2, and h = plastic hardening modulus. The
ratio of volumetric and deviatoric plastic strain increments for pure shear is def./dy” =
defi/2def = 78'|s; = B' (because for pure shear 7 = s;), which confirms that normality occurs
when 8 = B'.

3. PROTOTYPE FORMULATION OF ENDOCHRONIC INELASTICITY

The basic concept in endochronic formulations is the characterization of inelastic strains in
terms of one or several non-decreasing scalar variables whose increments depend on strain
increments. This variable, which has been initially called reduced time[1, 2], is now generally
known as intrinsic time. This term was introduced by Valanis[3], who was first to apply the
concept successfully to complicated nonlinear behavior, particularly cyclic loading and cross-
hardening of metals, and coined the Greek term “‘endochronic”. The theory is most properly
regarded in the context of viscoplasticity{1-3]; it is obtained as a special case of viscoplasticity
with strain-rate dependent viscosity (introduced by Schapery[1)) if one imposes the require-
ment that for a strain rate approaching infinity the ratio of inelastic and elastic strain increment
magnitudes must be neither zero nor infinite (see Appendix). The intrinsic time for time
independent behavior may be geometrically interpreted as the length of the path traced by the
states of the material in a strain space of suitable metric. A variable of this type has been in use
since the early 1950s (Hill, Ilyushin, Rivlin and Pipkin, see [3,4]). Thermodynamics of the
viscoplastic constitutive relations based on intrinsic (or reduced) time has been formulated by
Schapery[1, 2], Valanis[3,7, 12] and others[11].

Endochronic formulations of inelastic behavior lack the concept of yield surface and
suggest physical interpretations in terms of damage, microcracking, grain rearrangements and
internal friction. Thus, endochronic formulations seem to be more suited for geological
materials than for metals, in which the mechanism of inelastic strain is frictionless plastic slip
(or drslocations). Therefore, the general form of the practical endochronic constitutive
relation{4, 5, 8] which have met with great success in modeling geological materials exhibiting
strain-softening, pressure sensitivity and inelastic dilatency(5, 8,9, 13-19] is chosen to serve as
the prototype endochronic formulation. Restricting attention to time-independent deformations,
we may write the constitutive relation in the form of egn (1) in which

deﬂ-‘ = 5; d{, de” =dA ®

with

12
d=FlgeDd dA=Figehds df=(jdeyde) (10)



694 Z. P. BaZant

(a) (p) (¢)

]
 d6™ / g
.Eds / § Y/
o1 Yyai
4 //
[ £

Fig. 1. Loading and unloading for endochronic theory.

Here { is called intrinsic time, £ is called deformation measure, A = inelastic dilatancy (due to
shearing), F,, F;= positive-valued scalar functions calied hardening-softening functions.

The most conspicuous feature of the ordinary endochronic formulation (eqns 9 and 10) is
that no distinction is made between loading and unloading, provided that at the start of
unloading the inelastic stress increment can be assumed to be non-zero and equal to that for
continued loading. To illustrate it, consider the case of uniaxial strain, €, with all other ¢;
being zero[8]. Then, dropping subscripts 11, d¢ ~ |de| and de” ~ olde|. The incremental relation
is de =dofE +de”, which may be rewritten as do = E de —do”, where do® = E de” or
do™ = Ecoide], c being some constant. Increments do® = E de and do™ are depicted in Fig. 1
for positive de. Consider now that posmve de is followed by negative de, i.e. loading is reversed
to unloading. Obviously, do® changes sign but do” does not change sign because it depends on
|de|, as is shown in Fig. 1{8]. Thus, the irreversibility at unloading the salient feature of all
inelastic behavior, is modeled by the endochronic formulation in a very simple manner, without
the need for any inequalities for expressing the unloading criterion, provided that the material
response is adequately described by the implied assumption of equality of the inelastic strains
for continued loading and for the start of unloading.

4. LOADING FUNCTION IN ENDOCHRONIC THEORY

In associated plasticity, the tensor of inelastic strain increments is derivable from a scalar
potential, called loading function or yield function, F(ay), i.c. def! ~ 3F(oy)/doy. Even though
in non-associated plasticity and in endochronic theory the concept of vield surface lacks
physical foundation, it seems reasonable and useful to retain this concept for the endochronic
formulation and continue to speak of loading function. All practical endochronic formulations used
thus far satisfy this concept. The deviatoric part of the endochronic relatiens in egns (9)-(10),
which were shown to agree with extensive test data, is associated with von Mises loading function
because def ~ s; ~ aJ."/ds;. In the volumetric cross section, the loading function of the
endochronic theory is a curve (like that in Fig. 3b) with the slope B’ = 3F/d¢ given by the relation
kaF|ao = de” = dA in which, from the relation k3F/3s; = def = s; d{, one finds k = 1/d{. Thus,
B' = 8F{dc = dA/d{. and so the endochronic formulation in eqns (9)-(10) may be written as

def =2E 0 ar vith  Fioy) =1 sysy+8le) - Hy =0 (11)
i
g( =g = dA Fz(c, €A 2)

d( Fi(a, ¢, {)

H, being a parameter independent of o; components. Note that here 8’ inevitably depends not
only on current ¢; and o; but also on its history, and that dH, = ~(3Fldoy;) doJ(3FI3H,) =
Sij ds;, + ﬁ' do.

In the deviatoric strain space, a loading direction which is normal to the loading functions
associated with eqns (3) and (9) coincides with proportional (radial) loading paths. Most
experimental data pertain to such loading paths or to paths rather close to them. Even the
standard triaxial tests are essentially of this nature, because the hydrostatic stress, applied first,
causes little inelastic strain, with no directional damage (no stress-induced anisotropy), and the
uniaxial load which is subsequently superimposed is itself a proportional (radial) loading.

if attention is restricted 1o proportional or aimost proportional loading, it appears from
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numerical studies that the main experimental data available can be fitted reasonably closely by
either formulation, i.e. both endochronic theory and plasticity with dilatancy and friction can
represent the behavior of concrete under these conditions reasonably well. However, the two
formulations are vastly different in nonproportional loading. Of most interest are the strain
paths or stress paths which have a sharp corner. Such a corner must always be considered in
investigating instabilities (e.g. strain localization) due to material nonlinearity[28, 29). In case of
instability, the strain or stress path can proceed in any direction in the strain or stress space,
and generally it will not proceed in the direction of the preceding strain path.

The strain increment de; in the strain space will be called “normal loading” or straight-
ahead loading when it is normal to the loading surface corresponding to tensor def', and
“tangential loading™ or loading to the side when it is tangential to the loading surface. For the
loading functions associated with eqns (3) and (9) this corresponds to proportional loading
direction and directions normal to it, respectively (see Fig. 2).

current yieid surface,F
A—straignt-ahead loading

A
Ay=—loading to the side
(tangential)
&y

Fig. 2. Various types of load path.

5. INELASTIC STIFFNESS LOCUS

For comparing the endochronic and plastic formulations it is useful to define the following
property. , ’

Definition. Inelastic stiffness locus is the locus of all strain increments de; which give for a
given initial state the same magnitude Jde”| of the inelastic strain increment tensor def'. The
magnitude (or norm) may be defined as the length of the vector de{ in a six-dimensional strain
space of suitable metric or jde™| = [def def’ + Mi(del})*1'? where M, = given constant.

Note that deff is proportional to the plastic tangential modulus in the de;-direction. Thus,
the farther a point is on this locus from the current state in a given direction, the stiffer is the
plastic response in that direction.

To determine the locus just defined, it is necessary to express def in terms of de;. Consider
first the plastic formulation. Equations (1)~(4) may be regarded as a system of linear algebraic
equations in which def’ are the unknowns and de; are given. First, dx must be expressed in
terms of dey To this end, eqn (4a) may be used to calculate dfF=2hdu-p'do=
2hdu-KB'(3de—2Bdu)=2duh+ KBB') - §Kﬂ' de. Then, from eqns (1)~(3), dswm=
2G(deim — Skm Au/7), and 0 d7 = Spw ASim/27 = (Sem/27)2G(d€m — Stm du/7). Equating both
expressions for d7, one obtains an equation which yields

Gsim dé€m + ‘T’KE' dex

du == h+ G+ KBp) ' (13

It is now convenient to define inelastic stress increments as ds§’ = 2G def’ and do” = 3K de”.
Then dof = ds§ + &; do” = 2AGs; + KB78;) du/7 where §; = Kronecker delta. Substitution of
eqn (13) for du yields

dof = D d€im (14)
with

Dl = [(GIT)s; + Iipf%[(f}g;% + KB'Sen] 1s)

These are the tangential moduli for inelastic stress increments. Note that they are symmetric if
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and only if 8= g’, and that they are different from plastic tangential moduli defined by the
relation doy; = Cfim dem.

It is now obvious that if Df» de is constant, all components of do¥/ are constant and then
Ida] as well as fide}}| is also constant. Substituting eqn (15) one finds that this happens for

Sim dek,,,=C-§-I-éE-ide (16)

where C is some constant (Sux G€un = Sin A€ ).

To interpret this result geometrically, consider the material state (o, ;) plotted as point A
in superimposed stress and strain spaces in Fig. 3, separately for the deviatoric components and
- for the volumetric cross section. Also imagine that a space of infinitesimal increments de; is
superimposed at point A in Fig. 3. The six components of s; and de; may be imagined to form
vectors s and de. Then, eqn (16) at constant de may be written as s - de = const.; this is a scalar
product, and the equation means that the projection of vector de upon the direction of s (or s;)
must be coastant. This shows that the inelastic stiffness locus is a plane in the six-dimensional
space of de; In the two-dimensional picture of Fig. 3(a), this locus is given by a straight line.
The normais to the current yield surface have the direction of s; and the inelastic stiffness
locus consists of a straight line parallel to the tangent of the vield surface at point A. Similarly,
in the volumetric cross section, the inelastic stiffness locus is a straight line parallel to the
tangent of the current yield surface (sée Fig. 3b).

Let attention be now turned to the endochronic formulation. Here, according to eqn (9),
constant values of def are obtained when d{ = const., which corresponds to d = const. if oy
and ¢; are fixed. Hence, the locus of the end points of all strain increments de or de; which
give the same values of inelastic strain increments def is given by the equation

dey; de; = const. 17

or de - de = const. Consequently, in the deviatoric strain space, the inelastic stifiness locus is a
hypersphere around point A, which appears in a two-dimensional picture as a circle (see Fig.
4a). Due to hardening and softening functions of the endochronic theory, the diameter of this
infinitesimal circle varies as it is dragged through the strain space, but the shape of the locus
always remains a circle. In the full strain space, eqn (17) represents a hypercylinder, and in the
two-dimensional volumetric cross sections (Fig. 4) the inelastic stiffness locus appears as a set
of two parallel straight lines.

Note that for both plastic and endochronic formulations, not only fdeg§ but all components
of def are the same for all vectors de; ending on the inelastic stiffness locus.

Consider now the dependence of the tangent modulus of inelastic stress

H =ds%Ilde;) (18)

upon the de;-direction, characterized by angle a in Figs. (3)~(5). By definition, jds %} is constant
for all vectors de; on the inelastic stiffness locus, and so 1/H is proportional to the distance,
lide;ll, from point A to the inelastic stiffness locus along the a-direction. The plots of 1/H vs a
are shown in Fig. 6.

dea

g8

inslastic
stiffness

A1,A2,A3,A4 = dg;

: f ,
yield surface, F 01020304 = “‘?oae

A‘}:d\‘-‘ﬂ" Sy, Bu

Fig. 3. Inelastic stiffness locus for plasticity theory.
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Fig. 4. Inelastic stifiness locus for endochronic theory.
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Fig. 5. Inelastic stiffness locus for vertex hardening and endochronic theory with unloading criterion.
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Fig. 6. Inelastic tangent modulus as function of loading direction; for classical plasticity (P), vertex

hardening from Fig. 5(a) (V) and from Fig. 7(b) (R), Endochronic theory (E), endochronic theory with
stress-induced anisotropy (A).

The inelastic stiffness locus reveals the fundamental difference between plastic and endoch-
ronic formulations. If both are fitted to the same data on proportional loading, then the plastic
formulation is stiffer for loading to the side. For the tangential loading direction, plasticity gives
perfectly elastic response (H = 0), while endochronic theory gives inelastic response (H > 0).
Nevertheless, it must be realized that in both these formulations the inelastic strain increment
def/ for all loading directions of de;, is always in the straight-ahead direction, given by the -
normality rule (flow rule), and the components of de; in the tangential direction are purely
elastic; see the vectors def and dejf shown in Figs. 3 and 4.

* 6. RELATIONSHIP TO VERTEX HARDENING EFFECTS

In recent developments of plasticity theory, the creation of corners (vertices) on the yield
surface, called “vertex hardening”, has received considerable attention. According to classical
plastic formulations (eqns 1-4) the inelastic strain is created only by the normal (straight-shead)
component of de;, whereas the tangential (loading to the side) component csuses no further
inelastic strain, with the consequence that the response for load increments to the side is overall
much stiffer than it is for straight-ahead loading. For pure loading to the side (Fig. 2), no
inelastic strain is produced at all. This feature has been recognized to conflict with the
predictions of microstructural polycrystalline models of plasticity, which all indicate that the
“loading to the side” should also produce inelastic strain{30, 31).

To correct this defect various forms of vertex hardening models have recently been
introduced. In some of them, the yield surface is assumed to form a vertex (corner) at the
current state point on the loading surface, which indicates the inelastic stiffness locus to have
the shape shown in Fig. S(a). A different type of vertex hardening has recently been proposed
by Rudnicki and Rice[26]; they considered linear incremental equations in which the expression
for de?' from eqn (3) is augmented by the term (7 ds;; — s; d¥)/2h,7 where h, = plastic modutus
for loading to the side; this term is derived from the requirements that it must vanish for
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straight-ahead loading (ds; ~ s;) and must be linear in ds;. When unioading takes place, this
term is omitted (along with the straight-ahead term s; du/7). With the addition of the foregoing
term, the formulation still retains the linear form, which is formally identical to the original form,
provided that G. h, B, B’ and K are replaced by the following parameters[26]:

G=(IG+1h)", h=QU/h—=1/n)", B =Bhih,
(19)
B =ghlh, K=[1K+BBIh~h)]"

It is now clear that Rudnicki and Rice’s vertex hardening still leads to the linear incremental
relation (14), in which however, D is replaced by Dy and is expressed in terms of G. K. h,
B and §'. However, the true elastic stress increments are not ds; = 2G de; but 2G de;. Noting
that the elastic moduli are given as Dfi, = 208.*8,,,. +(K - 2G/3)864m, one must remove from
Dy dés the false elastic stress increments D, de., and add the correct elastic stress
increments Dy, dém, i.c.

do¥ = (D%m = Dbm + Diim) d€im (20)

According to eqn (15), it is now necessary to replace eqn (16) for the inelastic stiffness locus by
the equation

! Ci (s.,... deg, + %{- B'7 de) ~(D%m~Dm) dek,..l = const. 21

where C; are certain constants for a given stress state. It is apparent that, due to the last term
in eqn (21), the projection of vector de upon vector ds is no longer a constant but depends on
the loading direction de. So, the inelastic stiffness locus can no longer be a straight line. The
expression within ||- - || is linear, and thus eqn (21) may be written in the form of a quadratic
equation for de, components. Therefore, Rudnicki and Rice’s vertex hardening model{26]
gives the inelastic stiffness locus in the form of a quadratic curve; this curve must intersect the
straight-abead direction orthogonally (see Figs. 5b or 7b), and its curvature is a function of
modulus A, for loading to the side. (It must be pointed out, however, that this vertex hardening
model was intended(26] only for loading directions which are close to the straight-ahead
direction.)

There exists one essential difference from the previous cases. For classical plasticity as well
as endochronic theory, not only the magaitude of def' but all its components are the same for
all vectors dey ending oa the inelastic stiffness locus, while for Rudnicki and Rice’s vertex
hardening, only the magnitude is the same while the individual components of de§' vary when
moving along the locus. This means that the direction of def depends on the direction of de;,
while for endochronic and plastic formulations the direction of deff is unaffected by the
direction of de;. On the other hand, by introducing modified elastic moduli the inelastic stiffness
locus for Rudnicki and Rice's vertex hardening can be transformed to a straight line, whereas
for the endochronic formulation this is impossible. However, the endochronic formulations and
vertex hardening formulations share one most important property—namely, for both the
loading to the side creates inelastic strain. This property, for exampie, made it possible for
Valasis to model “‘cross-hardening of metals”, such as the effect of plastic twist on subsequent
axial extension diagrams, which was the earliest success of the endochronic formulation[3).

The dependence of tangent modulus H for inelastic stress is depicted in Fig. 6 for vertex
hardening from Fig. 5(a). This dependence is not smooth, while for the endochronic theory as
well as Rudanicki and Rice’s vertex hardening it is smooth. This might be preferable also for
iterative numerical solutions of structural problems. In contrast to both classical plastic and
endochronic formulations, the inelastic strain increments are generally not in the straight-ahead
direction and include inelastic componeats oriented to the side (Fig. 5a). The tangent modulus
doyd o€y (no sum) for loading to the side is a reduced modulus, while for endochronic and
plasticity theories it equals the unreduced elastic modulus for that direction.
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7. STRESS-INDUCED ANISOTROPY OF INTRINSIC TIME

In the light of the preceding discussion it seems appropriate to consider a generalization of
the endochronic theory in which the inelastic stiffness locus is not restricted to a circular
(hyperspherical) shape. Indeed, it would be purely by chance if for some real material the shape
were exactly circular. Modified shapes can be achieved by replacing d¢ from eqn (11) with

2
dg= ( i (2) e dein ) @)

in which p.(q) are coefficients which are not constant but depend on stress tensor [oy] = ¢. In
fact, since there is no reason for pu. to be independent of g, one must expect that py.,
depends on ¢. For an initially anisotropic material, eqn (22) but with constant pg. was
proposed by Valanis[3]. A complete anisotropic formulation has been developed for clays[19].
For isotropic materials, py,, must form an isotropic tensorial polynomial in ¢, and for g =0
coefficients pu. must form a constant isotropic tensor (as is the case for eqn 10). Thus,
coefficients pum exhibit stress-induced anisotropy, in the sense that the quadratic form
Pism d€; devy, is invariant with regard to the direction of de; only if the material is stress-free.
The simplest candidate for practical characterization of a material will be the case where the
fourth-order tensor pu.. is given as a linear isotropic tensorial function of o Then,

2d¢ = de; de; + pode; deg; + proy; dey deg + paoy; de; dew

(23)
+ prow de; de; + peos dey dey
of, as a special case,
2d¢* = de; dey + pys; deu deg
= (14 pysyy) de® + (1+ p1sn) de + (1 + pysy) dey’ (24)

where pq, ..., pa= constants, and de,, de,, de; = principal deviatoric strain increments. The first
expression can be shown to correspond to the most general symmetric form of a fourth-order
tensor, Py, linear in o (as known from hypoelasticity[32]). The second expression, eqn (24),
is the most general form which is independent of volumetric components dey and o, as might
be reasonabie to assume for many materials (see the arguments in Refs. [3] and [4]). With eqns (23)
or (24), the inelastic stiffness locus becomes a quadratic surface, which would appear in any
two-dimensional cross section of strain space as an ellipse, parabola or hyperbola (Fig. 7a).
However, the latter case in which the quadratic form in eqn (24) becomes hyperbolic is
inadmissible for it would give imaginary d¢. As a remedy, d¢’ would have to be set equal to zero
whenever it would be obtained as negative, which is equivalent to imposing an unjoading criterion
(Fig. Tb). Nevertheless, it is possible to choose such p, that ensures ellipticity of eqn (24) for all
stress states expected to be sustained by the material. This is achieved by choosing ! + pi|Smas] # 0
OF p1 € = 1/|Smax] Where $pm,, is the principal value of s; which is largest in absolute value among all s;,
expected to occur.

Equation (24) describes an ellipse located symmetrically about point A. It gives dtﬁmnt

(a) (D) ()]

S22 S22 iza “
€22 \ 822 22
o \’D\
/
Sufy | Susln | Si 8

Fig. 7. Inelastic stiffness locus for endochronic theory with stress-induced anisotropy (s); with unlosding
criterion (b): and with piecewise-linear intrinsic time increments (c).
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plastic hardening moduli for loadings to the side and straight ahead, but the same moduli for
straight-ahead loading and unloading. The latter feature is questionable, and it can be removed
by a different type of stress-induced anisotropy:

l 12 e
d¢= [5 (de; + posy d€")(dey; + posy df’)] , df= [% de; de.-,] - )

For this expression, the inelastic stiffness locus is a circle which is not centric about point A but
is shifted towards the origin (Fig. 7a), giving smaller inelastic strain for unloading as compared
to loading.

Alternatively, of course, d§ could be defined so as to give a locus of de; that is piecewise
linear (hyperpolyhedron). An example is the inelastic stiffness locus in Fig. 7(c), for which,
e.g8. d€ = a|de,| + bldes| + c|des|, where de;, de; and de; must be the principal deviator strain
increments in order to satisfy the tensorial invariance restrictions, and @, b and ¢ depend on s;.
In such a case, the inelastic stiffness locus becomes similar to that for certain vertex hardening
models. Conversely, it is possible to construct plasticity-type formulations with vertex harden-
ing for which the inelastic stiffness locus approaches that for the usual endochronic formulation
(eqns 9 and 10) as closely as desired. This is obtained when the set of all orientations of de;
(directions a«), is subdivided into many cones (hypercones in the full strain space, and angular
segments in (de;;, dex) space). Within each directional cone, linear incremental equations are
used, giving a piece-wise linear inelastic stiffness locus (describing a hyperpolyhedron). In the
limit for the number of direction cones approaching infinity, this locus approaches a smooth
surface characteristic of the endochronic theory.

8. REMARKS ON MATERIAL STABILITY

One property which is intimately connected with loading to the side and vertex hardening is
the question of material stability and unstable strain localization(28, 29, 26]. Due to the fact that
loading to the side produces inelastic strain, the material response to the side is “‘softer’ than it
is for the classical plastic formulation, and this can be expected to have a destabilizing
effect[26, 27]. For Rudnicki~Rice type vertex hardening, which gives inelastic strain for vectors
de; that are parallel to the yield surface, Drucker’s postulate is not satisfied and stability of the
material is not guaranteed. While some materials are stablie, most materials must indeed be
expected to violate Drucker’s postulate and the normality rule at sufficiently large strain, and
permit material instabilities (26, 29]. An important example is the class of geological materials,
such as sands, clays, rocks and concrete. In these materials, the inelastic strain depends on
friction, and in such a case the normality rule and Drucker’s stability postulate do not
apply [20, 33]. Micro-fracturing in these materials, and the inherent dilatancy, are undoubtedly
also sources of possible material instabilities.

Recently, it has been shown that these phenomena give rise to behavior which is ap-
proximately modeled by vertex hardening, and that the vertex hardening has a profound
destablizing effect, promoting instabilities in the form of a localization of a strain in a narrow
band (26, 27, 29].

Material instability is also caused by strain-softening [34], which is known to exist in
concrete, rock and soils, as recent tests in tension, compression and torsion indicate. Strain-
softening can only be observed on specimens of micro-inhomogeneous material which are
sufficiently small to prevent unstable strain-localization and are loaded by a sufficiently stiff
displacement-controlled testing machine. Strain-softening is not allowed by Drucker’s
postulate [23], but is admitted by an analogous approach, called fracturing material theory[35-
37). Agreement with experimental data on strain-softening has so far been obtained only with
the endochronic formulation[8).

Thus, it is clear that for materials which do exhibit unstable strain localization, or
strain-softening, such as geological materials, the endochronic formulation, compared to
plasticity with a smooth yield surface, stands at the proper place of the scene—it does allow
plastic strain at loading to the side, similarly to the vertex hardening models, and it does allow
strain-softening. With classical plastic formulations satisfying Drucker’s stability postulate,
such effects, if they exist, are inevitably missed.

On the basis of microstructural polycrystalline models[31], it has been found that already
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for a relatively small strain the current zero-offset yield surface, representing an envelope of all
points which can be reached from the current state without causing inelastic strain, shrinks
almost to a point. The point is equivalent to an infinitesimal circle, and precisely this happens in
endochronic theory. This fact serves as a physical justification of the endochronic theory.

The fact that for loading to the side the endochronic formulation gives generally a softer
response (lower stiffness) than plasticity means that the model is more prone to indicate
instability. Thus, the endochronic formulation is on the side of safety in case of stability
predictions, whereas classical plasticity is, among all possible inelastic constitutive relations,
the least conservative and the least safe model that can be assumed if test data are inconclusive
as far as the choice of the type of constitutive relation is concerned. On the other hand, vertex
hardening models are still more prone to indicate instability because for tangential loading they
exhibit inelastic strain components in the tangential direction while the endochronic inelastic
strain is entirely in the straight-ahead direction. Thus, it might be appropriate to incorporate
into endochronic theory some vertex hardening features, e.g. the model of Rudnicki and
Rice[26].

9. RELATIONSHIP TO DEFORMATION THEORY OF PLASTICITY

A simple prototype of Hencky's deformation theory of plasticity is given by Néadai's
stress~strain relation[24, 25}

sy = f(J2%)ey (26)

in which J,° = (1/2)s;s; = 7> = second invariant of stress tensor o;. Prager and others have
shown that this type of formulation has certain serious deficiencies, such as independence from
the loading history[24, 25). On the other hand, from experiments it is known that the defor-
mation theory happens to give better predictions than the incremental theory of plasticity (eqns
1-4) in many cases, one of which is loading to the side[38].

To discuss loading to the side, eqn (26) may be differentiated:

dsy = 107 deg + ey L0 gy, @

Consider now a state in which s1; and ey, are non-zero, all other s; and ¢; being zero. The
straight-ahead (radial, proportional) loading is here represented by de,;, and the loading to the
side is represented, ¢.g. by dex or by de;s. The corresponding stress increments, ds,; or ds;,,
are obtained from eqn (27) as dsx» = f(J2”) dex, and ds,, = f(J,°) de;,. Thus, the tangent modulus
for loading to the side is less than the elastic modulus and equals the current secant elastic
modulus [38].

In the present context, the foregoing result means that in the deformation theory there exists
inelastic strain for loading to the side[38], which is a type of loading for which the deformation
theory often gives good agreement with experiment. This is in similarity to vertex hardening,
and partly also to the endochronic formulation, and in contrast to classical plastic formulations
(eqns 1-4), which give purely elastic response at loading to the side.

10. ENDOCHRONIC KINEMATIC HARDENING AND
OTHER LOADING FUNCTIONS

The endochronic formulations used so far (such as eqns 9 and 10) correspond to isotropic
hardening, and so does the plastic formulation in eqns (1)~(4). This is because def ~s; ~
8J,°|asy where J,° = const. characterizes in plasticity theory a yield surface which is always
centered at the origin of stress space (Fig. 8) and dilates while retaining the same shape.

So, it may be of interest to identify a counterpart of anisotropic hardening rules known from
plasticity, especially kinematic hardening. Here, the yield surface not only dilates but also
moves as a rigid body. Considering, e.g. Prager’s kinematic hardening rule[24, 25], an analogous
generalization of eqns (9) and (10) would be obtained by deriving def' from a loading function F
which, in addition to expanding radially (isotropic hardening) also moves as a rigid body
(kinematic hardening). Thus, adhering to von Mises-type loading function for deviator defor-
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Fig. 8. Endochronic kinematic hardening.

mations, the endochronic loading function from eqn (11) may be generalized as
1 q
F(oy) = [5 (835 = @y )(s - an)] +gloc—al)-H, =0 (28)
and according to eqn (11), eqns (9) for g = 1 are generalized as
defl=(sy-apdf,  de” =dr =22y 29)

Coeflicients ay, ao (With ay = 0) indicate the current center of the loading surface.

One could, of course, further speculate on the rules for the incrememts day and de, as
functions of dey, doy and d¢. For example, similarly to Shield and Ziegler's hardening rule in
plasticity{24, 25,

da,, = kl dSﬁ‘ = 26k| deﬁ‘, ddo = ko doﬂ = 3Kko dtpl (30)

where ko, and k, are constants and 0<k, <1 may be expected. (According to a private
communication by C. L. Shieh of Northwestern University, the use of k,=0.15 and k,=0
distinctly improves the fits of asymmetric hysteresis loops for highly strained concrete.)
Equation (30) yields pure isotropic hardening for ko = 0.

For the endochronic formulations corresponding to a Maxwell chain model{8, 14}, a cor-
responding generalization would be to use def, = (s;, —2G,k, de;) d{,, subscript u referring to
relaxation time 7,.

Refinements within the isotropic loading functions are also possible. For example, it seems
that a somewhat improved description of concrete is possible with F(oy)=
L+ cJi¥2 + g(0) ~ Hy where J3 = s,uSa,5,m/3 = third invariant of s;. Equation (11) then yields

deﬁ‘ = (sii + CS(*S“) d{. a3n

However for a clear answer one needs more accurate test data than are available at present.

In endochronic theory there is, however, one important practical difference in hardening
rules as compared to plasticity theory. This is due to the fact that in plasticity there exists the
property that all states within the current yield (loading) surface can be reached without
inelastic straining, while in endochronic theory no state can be reached in this manner.
Therefore, points of the loading surface which are at a finite distance from the current state A
(Fig. 9) are irrelevant for the endochronic formulation. The only relevant property of the
loading surface is the local curvature of the loading surface at the current state A. This
curvature is reflected in the current location ay of the center of the loading surface. In the light
of these considerations, it seems that the absence of yield surface in the plasticity sense might
be a useful and simplifying feature of the endochronic theory. It makes it possibie to cease
worrying-ahbout the entire current loading surface and reduces attention to the local properties
of the current loading surface near the current state.

10. TANGENTIAL LINEARIZATION OF ENDOCHRONIC FORMULATION

The stress-strain relations of incremental plasticity are linear in stress and strain incre-
ments, and therefore it is possible to relate the increments do; and de; by a matrix of tangential
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Fig. 9. Tangential lineari: :ation of the inelastic stiffness locus for the endochronic theory.

moduli, Dy, ; i.e.[24]
dﬂ,‘,‘ = Dm,,, dik,,,. (32)

For the plastic formulation in eqns (1)44), Dim = Dim— Diim, where D=
2G8udim + (K — 2G/3)8ybim, and DY, is given by eqn (15). As will be seen, for the endochronic
formulation moduli Dy, can be expressed only if the direction of vector de (or de;) is known.

In analyzing material instabilities, it may often be necessary to linearize the incremental
stress-strain relation so as to obtain an eigenvalue problem. For this purpose, the curved
(circular) inelastic stiffness locus of the endochronic theory must be replaced by a plane (or a
straight line) which is tangential to the curved locus at the point of assumed strain increment
direction, dey = by; see Fig. 9. The linearized formulation will then be equivalent for all de;
directions which are sufficiently close to de; = by So one must replace (de; dey2)'? by a
linear expression which represents, for fixed d¢, a plane that is normal to vector b; in the
six-dimensional strain space; i.e. d¢ = kb - de or d¢ = kb, de;. Constant k must be such that for
dey = b, the correct value of d¢ be obtained. This requires that df = (Dumbim/2)'? = kbimbim,
which yields

df = B,'j de.-,-, with B,',' = (2: hbbu ) (33)

The tangential linearization can, of course, be also obtained without resorting to geometrical
considerations. Let de; = b; + p; where tensor p; is small compared to by, in the sense that
|bypy| € byby. Noting that (1+ 8)"?= 1+ §/2 if § €1, one may arrive at eqn (33) by the following
transformations:

1n

1 ”
d¢é= (5 de; deii) = [‘2‘ (bij + py)b; + pi])]
1 12 1 2b.p: 12
- (o r00)"= [ 14289
1 2 bypy \ _ byby + b“%-‘
(2 b“"'b"'") (1 * b,,b,,) = @bumben)
= (2bk,,.bh, )_lnbij de;,- = Bli dei,-. (338)
A similar linearization may be applied in the general endochronic theory to the expression
df = (pw dt‘y diu)m.
Substituting eqn (33) into the stress—strain relations of endochronic theory, the formulation
becomes equivalent to plasticity without normality. If eqn (33) is substituted in eqn (10) or (11),

one obtains a plasticity formulation which is identical to the endochronic formulation for the
cases of proportional (radial) loading, e; = A;t. Here

— A i —
B;= m for ;= Ayt (34)
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where A; are given constants, and By is also a constant. Furthermore. assuming that the test
data available are essentially of the proportional loading type, for which b; ~ ¢;, the substitu-
tion of

e; de _ 1 ! 1-Bo , 4.
o=t or de=poy(oenten) st o9

in the endochronic formulation should allow (for any B,) an equally good fit of test data.
Moreover, parameter B, in this expression allows the ratios of inelastic strain at loading and
unioading to be controlled.

Having linearized the incremental stress—strain relations, it is possible to put them in the
form of eqn (32) and express the fourth-order tensor of tangential moduli Dy For this
purpose, eqn (33) for d¢ may be substituted in eqns (9) and (10), yielding

ds;; =2G de,-; - 2GF1$qB,, de,,

(36)
do,, =3K de,, ~9KEF;B,, de,,.
Insertion of doy = ds;; + 8 don/3 and rearrangement yields
doy = (2G8,8; — 2GFs;B,, — 3KF;8;B,) de,; + Kbidrm déim 3N

Subsequently, introducing de,, = de,, — 8, d€,p/3 = (8 Bms ~ Simdnl3) d&xm, ONE Obtains an equa-
tion of the form do; = Dyam dewm (eqn 32) in which

Digom = 2G8u83 + (K ~ 2G13)8i84m — (2GF 155 + 3KF384 X Bem — 1/3Bpabim)- (38)

To illustrate the linearization, consider a simple endochronic formulation for a material with
only two stress-strain components:

doy = Eu den + Ep déu + Fﬂ’n\/(dG%( + de%),
(39
doy = E;, de,, + Enden+ FonVidel +ded),

where E,y, En, Ep, E,, are elastic moduli, F = constant, and the square-root expression
corresponds to d¢ from eqn (10). Assuming that the strain direction is (1,0) or de;; >0, den =0,
one has By, =1, Bp=0 and (de}, + de3,)'? = By, de;, = dey, near the assumed direction. Equa-
tion (39) may then'be brought to the form

doyy = (Ey + FByory) dey + Ejpden,
(40)
doy = (Ey + FByop) déy + Ex dep.

On the other hand, if the strain direction is assumed as (0, 1) or dex >0, de;, =0, one has
By =0, Bp=1 and (de}, + de%)"? = By dex, = dex near this assumed direction. Equation (39)
then becomes

doy = E dey +(Epp+ FBnoy) den,
4n
da'n = E;‘ diu + (Ezz + mzzd'zz) dezg.

When the loading path is smooth, then the direction de; in each loading increment can be
based on the direction in the preceding increment. However, when the loading path forms a
sharp corner (paths AA,, AA,, AA, in Fig. 2), and this must always be assumed in analyzing
material instability, then the direction b; of dey is unknown.

The dependence of Dy, on the unknown direction of de; will undoubtedly cause difficulties
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in numerical analysis of material instabilities by finite elements. However, for the plastic
formulations the situation is partly similar, in that the matrix Dy, is different for ioading and
unloading. For some types of vertex hardening, different matrix Dy, applies for several
segments (cones) of directions: unloading, loading straight ahead, loading to the left in
(ey1, ex2)-plane, loading to the right in (ey;, €x)-plane, etc.

12. STABILITY, UNIQUENESS AND CYCLIC LOADING

It has been known since their inception that the endochronic formulations violate the
normality rule and Drucker’s stability postulate. On the basis of this fact it has been suspected
in a recent critical study[39)] of the endochronic formulations that they couid lead to numerical
difficulties, especially in cyclic loading; and it was concluded that the endochronic formulations
may, therefore, be unsuitable for numerical structural analysis. In this respect it must be noted,
however, that the violation of Drucker’s postulate per se cannot be objected and is even proper.
It is well established that unstable materials and strain-softening materials do exist and are quite
common. It is, in fact, of main interest to detect situations when this is not so. Various studies
of unstable strain localization and of vertex hardening are motivated by efforts to reveal
material instabilities. It is the purpose of structural analysis to predict such phenomena. When
an instability is encountered, the numerical algorithm cannot be stable, and convergence cannot
take place. Thus, the aforementioned numerical difficulties might often be just an indication that
material instability has been reached. For materials which are suspected of developing unstable
strain localization, or which are known to exhibit strain-softening, it is actually imperative not
to use a formulation which satisfies Drucker’s postulate, or else real instabilities could be left
undetected in the numerical calculation. In view of this, and because endochronic formulations
are “softer for loading to the side”, they will yield more conservative (safer) designs than
plasticity formulations.

However, it must be admitted that there is at present little experience with the use of
endochronic theory in finite element codes. Some numerical difficulties which have nothing to
do with actual material instability, i.e. with the question of validity of Drucker’s postulate,
might be found, and methods to cope with them will then have to be investigated.

The feature of the endochronic formulation which has been repeatedly criticized in
discussions at technical meetings and is also elaborated upon in Ref. [39] is the fact that
inelastic strain can be getting continuously accumulated without bounds if a cyclic loading of
arbitrarily small amplitude s is superimposed on constant stress o, with the result that
instability of response and lack of uniqueness may occur. However, the choice of the precise
nature of the stability and uniqueness condition is debatable, and so a reexamination is in order.
Like in Ref. [39], let attention be restricted to uniaxial behavior, and consider the uniaxial
endochronic formulation[8, 13}

_d_(T g =—dﬂ- = =
de=F+Ed =gl dn=Flds  df=|de “2)

in which f(n) = hardening function{3, 4, 8] and F(e) = softening function(4, 8], which are non-
decreasing continuous functions of n and ¢, respectively, and o, € now are the uniaxial stress
and strain. (The subsequent analysis could also be applied to the endochronic formulation given
by eqn (42) with d¢ = |da|, which was introduced in 1969 on pp. 70-71 of Ref. [40).)

Consider now a puisating load in which the stress is prescribed in the form o = o+ s sin wt,
where ¢ is a loading parameter. Let the strain produced by static load oo at t =0 and 0< s € 0,
be denoted as ¢,. Because for s -»0 the pulsating stress is physically equivalent to static stress
oo, Uniqueness and stability requires that the response €(z) approach in some sense the value ¢
produced by static stress o, alone. However, it is arguable precisely in which sense this
approach must take place. The following three different conditions of uniqueness and stability
may be considered:

|€(t)— €| <& for all t and some (sufficiently small) s (43a)

le(t)— €l <= for all t (43b)
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lim {e(t)—~ €} =0 for any given ¢ (43¢)
s—=0

where 8 is a given arbitrarily smail positive number and &, is the value of € for o =gpat t = 0.
The first condition, eqns (43a), is a strict stability condition of Liapunov type, like that used in
dynamics. The second condition is a weaker one, and the last one is merely a continuity
condition, which is required for the problem to be properly posed and is the most reasonable
condition from the physical point of view.

Although none of the endochronic formulations guarantees fulfillment of the strict condi-
tion, eqn (43a), unless an unloading criterion is introduced, all endochronic formulations satisfy
eqn (43¢c) and some also satisfy eqn (43b). To show it, integrate eqn (42). It is easy to check that,
for oo> s >0,

T~ § _ oo+ S . - ‘dng
5 P, <e(t)-e< E &t with &, J;f(‘n) (44)

in which @, is a continuous non-decreasing function of n = n(t). For the pulsating load given

Mo+ KosF(€o)t <n < mo+ kisF(eo)t (45a)
where
=L, 1) =(Ll,1\2e
ko—( “+E) -, k.—(E+E'> - (45b)

in which no = constant, E, is the initial tangent modulus at ¢t =0, and E, is the initial unloading
modulus at ¢ = 0. The inequality ensues from the fact that as pulsation goes on the hardening
function causes the current tangent loading modulus to increase and the current unloading
modulus E, to decrease, while always E, < E < E, (see Fig. 1).

Sin~e ®, < fi(st) where f, is an increasing continuous function, with f,(0) =0 and bounded
for finite st, it follows that lim ®, for s =0 at any fixed ¢ is 0. According to eqn (44), this means
that the weak condition in eqn (43c) is always satisfied.

According to eqn (45a), lim o for > = is «, and, in consequence, the stronger stability
condition in eqn (43b) is satisfied if lim®, for t > is bounded, i.e. if the inverse of the
hardening function f(7) is integrable up to ». This is not true for Valanis' hardening function(3]
f(@)=1+pn, for which &, =(1/8)In(1+Bn)+constant. Equation (43b) is satisfied,
however, if

fm)=Aq™, m>1, for sufficiently large 7, (46)
where A is some constant. This is true, for instance, if

fm=1+Bm+Bm* (B1.B:>0) (47

which is the function that has allowed improvement in fits of cyclic test data(8].

The strict stability condition (eqn 43a) could be satisfied only if lim &, for t >« and fixed s
approached 0 as s »0. This would require that lim n for t - approached n(0) as s =0, and
according to eqn (45a) this is never true because lim n for t >« is ».

Another case studied in Ref. [39] was the pulsating strain. Thus, consider that ()=
€0+ ¢ sin wt, with 0 < ¢ <€ ¢o. Rewriting eqn (42) as do + o d{ = E de, it is seen that Ao + oAl =
0 for each pulsation cycle, and so (for ¢ < &) the response is stress relaxation of the form:

a(t) = geexp (—P,) (48)
in which ®, is again given by eqn (44) and £ = ket, with k = 2w/#. Further arguments are similar

as before and the conclusions are the same, except that o(t) always satisfies not only the
condition of the type of eqn (43c), but it always satisfies also the stronger condition, eqn (43b).
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For comparison, consider now a typical, classical formulation of viscoplasticity. Its simple
uniaxial form may be written as de = dof E + (o')o dt with ¥(o) = 1 + ko?, k > 0. The response
to static stress o(t) = o, applied suddenly at ¢ =0 is () = &+ Yoo}, With € = a4/ E. Assuming
that o >0, € >0, the response to pulsating stress o(f) = go+ s(1 + sin o!), s> 0, satisfies the
inequality:

€+ Plog+ 5)t < €(1) < g+ P(op+ 25)t. (49)

Thus, the difference between the responses to static and pulsating load is €(f) - € = at, where
0 < o+ 5) — ¥loo) < a < §{ae+ 25) — (o). Since €{t) — € grows beyond any bound, only the
condition in eqn (43c) is satisfied. However, the stronger conditions in eqns (43a) and (43b) are
not satisfied. If this is admissible in classical viscoplasticity, it must be admissible in endoch-
ronic inelasticity.

In viscoplasticity, the strict stability condition in eqn (43a) becomes satisfied in the limit of
infinitely rapid deformation, i.e. if @ =, making the response perfectly elastic. If desired, the
endochronic theory, too, can be formulated so as to make the response for w —x as close to
perfect elasticity as one pleases. To this end, it suffices to use a time-dependent endochronic
formulation associated with a Maxwell chain model[8, 14] whose shortest relaxation time is
sufficiently short compared to the oscillation period.

Fulfillment of the strict stability condition in eqn (43a), if deemed desirable, can be achieved
also in other ways. One other way is to incorporate into the endochronic formulation an
unloading criterion. This is not at all against the spirit of endochronic theory, as the absence of
the unloading criterion is not the essential feature of endochronic theory, anyway. (Rather, it is
the curvature of the inelastic stiffness locus.) As an alternative way, eqn (43a) may be satisfied
by making hardening function f(n) depend on the energy dissipated up to current time, D, is
such a way that a certain value of D depending on 1,”) could not be exceeded.

The violation of uniqueness and stability requirements was suggested in Ref. [39] to give rise
to serious numerical difficulties and preclude the use of endochronic formulations in practical
numerical analysis of structures. However, within the context of eqn (43c), the physically
reasonable condition, this could be true only if w were arbitrarily large; but this is impossible,
because w can never exceed the first fundamental frequency of the grid used (not even for a
step load history). In a continuum, « can, of course, be arbitrarily large, but then a time-
dependent endochronic formulation based on Maxwell chain with a sufficiently short first
relaxation time should properly be used. Moreover, the period of oscillation of the grid due to
numerical error would be very short, probably shorter than the time step used, in which case
the oscillation could not be reflected in numerical solution.

Therefore, the claim of innate numerical unsuitability of endochronic formulations{39]
appears to be an exaggeration.

13. UNLOADING, RELOADING AND NON-VISCOUS HYSTERESIS

By contrast to plasticity, the response curves for the ordinary endochronic formulations
(eqns 9 and 10) exhibit at the start of unloading a slope that exceeds the current elastic modulus
E. For metals, experimental data clearly contradict such behavior. However, for geological
materials the interpretation of experimental data is not clear because the current elastic
modulus E gets reduced by microcracking, as compared to the initial modulus E,, which causes
that the unloading slope which does not exceed Ey may or may not be higher than E, depending
on the value of E.

However, if a reduction of E due to microcracking is not considered, or if it is too mild, it
may be appropriate to introduce an expedient combination with plastic formulations, in which
an endochronic unloading criterion is postulated and strain de? is either reduced or completely
canceled whenever unloading occurs. Some unloading criteria have already been suggested for
endochronic formulations: dJx¢)<O0[8], and s% de} <O[11]. Valanis’ concept of internal
barriers[12] is also a form of an unloading criterion. When d¢£ is taken as zero for unloading, the
inelastic stiffness locus for the endochronic theory assumes the shape of a “bulge™, as shown in
Figs. 5(b) or 7(b). With such a criterion the endochronic formulation can be made to satisfy
Drucker’s postulate.

$S Vol. 14, No. 9—B
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Consider now again cyclic loading, directing particular attention to the work AW dissipated
due to non-viscous (rate-independent) hysteresis during unload-reload stress cycles of arbi-
trarily small amplitude s. This work consists only of second order terms AW =doy; de?//2
because the first order terms o; de cancel with the work of applied loads, owing to the
principle of virtual work. Although there is no fundamental necessity to satisfy the condition
AW =0 (Drucker’s postulate), it may be reasonable to do so, especially at lower stress levels,
unless there is some good reason against it (e.g. when a release of frictionally blocked elastic
energy is expected due to friction reduction). The ordinary endochronic formulations (eqns 9
and 10) violate this condition, because for the unload-reload cycle AW is negative (being
represented by the cross-hatched area 123 in Fig. 10)(39]. Classical plasticity, as well as the
afore-mentioned endochronic formulations with unloading criterion, gives AW =0. This
satisfies Drucker’s postulate but does not permit representation of cyclic strain accumulation
(cyclic creep, “ratcheting”). This is a rather important phenomenon, whose mechanism cannot
be explained by plastic slip (and calls for other effects, such as the “‘ratchet effect’" [40-42]). So all
existing formulations are inadequate.

Fig. 10. Small cycles stress or strain superimposed on static stress or strain.

To model cyclic strain accumulation, the end point of the cycle (point 3 in Fig. 10a) must be
to the right of the starting point of the cycle (point 1 in Fig. 10a). Obviously, the only way to
obtain this and yet satisfy AW = 0 for arbitrarily small amplitudes s is to meet these conditions:

(1) At the start of unloading (point 1), as well as at the start of reloading (point 2), de;; may
not be of the opposite sign as de;

(2) Inelastic strain of the same sign as de; must be produced right after the start of
unloading and again right after the start of reloading.

(3) During reloading the inelastic strains must be more pronounced than during unloading,
but less pronounced than during virgin loading.

These conditions can be met as follows. Conditions 1 and 2 require the use of kinematic
hardening, such that a; (center of loading surface) (eqn 29) is set equal to s; at the start of
deviatoric unloading and again at the start of deviatoric reloading; and similarily a, is set equal
to oy at the start of volumetric unloading or reloading. An unloading-reloading criterion must,
therefore, be introduced. This criterion can neither involve only stresses, for strain-softening
may not be interpreted as unloading, nor can it involve only strains, for in symmetric hysteresis
loops the return branch would make the transition to virgin loading too late. This fact, along
with the fact that Drucker’s postulate[22) is concerned with work, suggests that the criterion
be expressed in terms of internal volumetric and deviatoric work W and W', defined as

dW=3c0de, dW'=g;de; (50)
The inelastic strains from eqn (9) may be redefined as
de” =(c—ag)cdr, def =(s;—ay)c' dL 1))
in which

(1) fordW=0andW=W,: c=1

fordW'=0and W'= W5 ¢'=1 (virginloading) (52a)
(2) fordW<0: c=c,

fordW'<0: ¢’ = ¢l (unloading) (52b)
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3 fordW=0and W< Wy c=c¢
fordW'=0and W < W§ c¢=c, (reloading) (52¢)

with 1s¢,<c,, 1=sc.€c); W, and W} are the maximum values of W and W' attained up to
the current time. Coefficients a; or aq are set equal s; whenever ds§ de; or do” de becomes
negative, which assures that each of these expressions always remains positive (II'iushin’s
postulate). (According to a private communication by C. L. Shieh, this formulation works quite
well for cyclic loading of concrete as well as sand.)

Consider now the uniaxial equivalent of eqns (50) and (51):

_do_ o-a
de—E+ B

=(g—a)"" - dn = 53
¢cd{, ¢=(o—a)", dZ ony dn = Fl(e)|de] (53)

where a is the current center of yield surface, corresponding to a;;, ag, and function ¢ is added
as it is useful to control the dissipated work during the cycle. (This form has a multiaxial
counterpart in setting g = (m + 1){2 in eqn (28) for the loading function.) The second order work
dissipated during an unload-reload cycle is AW =AW, —~ AW, where AW, and AW, are the
areas shown in Fig. 11. For a very small amplitude s, AW may be easily calculated from eqn
(53), because F, f, and E may be considered constant during the cycle. Equation (53) for the
unloading branch as well as the reloading branch may be written as dé = E(1 - aé¢™) dé in
which & = 0 ~ aq, € = € — €, a = ¢FIfE at the beginning of the cycle, € = strain at the beginning
of the unloading branch. For small & this equation is equivalent to dé = (1+ a¢™) dd/E. The
area W above the unloading curve or below the reloading curve satisfies the equation
dW = & dé = (1 + ag™) d&/E. Integration of these two equations yields

(1+;—n-“—5'"), Wz%(u;n—z{-i&"). (54)

Superimposing the strains and the areas for the unloading and reloading branches, one finds that
the net strain increment and the dissipated work for the unload-reload cycle (Fig. 11) are

_Fler—c) g yme AW __IF & .
Ae= E(m+ 1)f s, W, (m+ Df (C,, m+ 1) (2s) (55)

in which W, = (25)*12E = elastic work of & during reloading.
It is now evident that cyclic strain accumulation will oceur if ¢, <c,. To also ensure that
AW =0, it is necessary that

G <cs(m+1)c. (56)

This is the condition under which an inelastic constitutive law exhibits cyclic non-viscous
strain accumulation, yet satisfies Drucker’s postulate. This condition is of general validity,
because for small enough s the loop can always be approximated by power curves, for any
constitutive law.

The ratio AW/ W, characterizes non-viscous hysteretic internal damping. Equation (55) for

AW = AN,- AW,30
€

Fig. 11. Cyclic creep with small hysteresis loops for positive energy dissipation.
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Ae seems to give best agreement with Whaley and Neville's test data on cyclic creep of
concrete if m = 2/3, although m =1 is also acceptable.

It can be shown in the same manner as before that the present formulation again satisfies
only continuity condition (43a), and possibly also (43b), but not the Liapunov-type condition
(43a), despite the fact that Drucker’s postulate is not violated by the cyclic response. The
opposite case, in which a frictional material is Liapunov-stable yet violates Drucker’s postulate,
has also been pointed out(33]. Thus it must be concluded that Drucker’s stability postulate is
not a reliable indicator of Liapunov-type stability.

The preceding treatment of hysteresis can be readily adapted to plastic formulations using
the tangential linearization (eqn 33).

14. INELASTIC STIFFNESS LOCUS FOR FRACTURING MATERIAL _

The strain-softening, i.e. the decline of stress at increasing strain, as commonly observed in
geological materials, is very hard to model in terms of plasticity theory. Even the modeling of a
limit state, in which dofde -0, is difficult. One suitable formulation for limit states and the
subsequent strain-softening is the endochronic formulation. However, another possible formu-
lation which is similar to plasticity has been recently proposed simuitaneously by
Dougill (35, 36] and by Naghdi and Trapp(37]. Dougill assumes that oy = D€ Where Dy,
are the elastic moduli which decrease as the strain grows, Dy = Diam(€5), 50 as to model the
effect of microcracking in an inhomogeneous material. By differentiation this yields

doy = Digm d€xm —dof,  doff = —d Dimtion. 7

The main question now is how to determine dDi,. To this end, Dougill postulates a “fracture
surface” F(ey Hy) =0, which is defined as an envelope of all states ¢; which can be reached
from the current state without further fracturing (microcracking); Hy are fracturing parameters.
Choosing (dFl3H,)dH, to be negative when fracturing occurs and noting that dF =
(0F] d€;) dey + (aF13H,) dH, = 0, it is clear that

(oF oey) d(a >0 (58)

when fracturing occurs and 3Fde; <0 when it does not. Consequently
aF
d {' = g = 59
T = 84 3~ d€im (59)

where g; are some constants. Now, imposing II'iushin’s postulate (35, 37), doff de; = 0, which is
a complementary form of Drucker’s stability postulate, and comparing this with eqn (58), it
follows that do/f ~ —aF]ae;. Furthermore, comparison with eqn (59) yields g; ~ —3F] de;, and so
one may set

o 9F = IF
dof=fodd  dx=3dem (60a,b)

For a dilatant pressure-sensitive material, a suitable form for F is here proposed to be
F(ey) = ¥+ h(€) - H,, with 7 = (eye;/2)'. For this case eqns (60a,b) yield

y dx .
dsff = pey 5‘;- do’ = §a¢ d« 61
dx = d7 +a'de = m20m 4 o7 ge 5)

where ¢ is an empirical coefficient, which can depend on o; and ¢; a’' = dh(e)/de and a = a’
according to eqns (60a,b). Similarly as for the effect of internal friction on plastic shear, it is
possible that shear fracturing depends on volume change or €. Then, a# a’, and the normality



Endochronic inelasticity and incremental plasticity 711

rule, expressed in eqn (60a), no longer applies for volume changes. For cyclic loading it seems
appropriate to introduce kinematic hardening by replacing ¢; with €; — a; in the expression for
F.

To compare the fracturing material formulation with other formulations, it is of interest to
determine the inelastic stiffness locus, defined again as the locus of the end points of all vectors
de; which give the same dof. According to eqn (60a) it is necessary that dc be constant.
Hence, according to eqn (60b), the plastic stiffness locus is a plane (hyperplane), which appears
as a straight line in a two-dimensional picture. The plane is oriented tangentially to the current
fracture surface except in case of eqn (62) where for a' # a normality is not satisfied in the
volumetric cross section.

Thus, the inelastic stiffness locus is the same as in plasticity theory, and the difference
consists only in the facts that hardening is governed by strain rather than stress and that elastic
moduli decrease rather than being constant. So, the fracturing material theory as described here
exhibits no inelastic strain for loading to the side, which must be questioned when material
instability is to be investigated.

15. CONCLUSIONS

(1) A meaningful way to compare the endochronic and classical plastic formuiations is by
studying the locus of all strain increment vectors which give the same magnitude of inelastic
strain increment, called inelastic stiffness locus.

(2) For classical plasticity the inelastic stiffness locus is a straight line, whereas for the
endochronic theory it is a circle or a sphere, and for its refined versions it is an ellipse
(ellipsoid) or a bulge on a line. The basic difference of endochronic formulations from
incremental plastic formulations consists in the fact that the inelastic stiffness locus is curved,
rather than straight. This causes that for a strain increment which is tangent to the current
loading surface (loading to the side) the endochronic theory exhibits plastic strain, making the
response softer, while the associated or non-associated plasticity gives purely elastic response.
The latter is in contradiction to the prediction of microstructural polycrystalline models, which
show that the current yield surface may shrink almost to a point or infinitesimal circle, as in
endochronic theory.

(3) Endochronic theory is similar to the vertex hardening models and to the deformation
theory of plasticity in that the inelastic stiffness locus is not a straight line and that inelastic
strain accompanies strain increments tangential to the loading surface, while in plasticity the
response is elastic. Therefore, among all inelastic theories, classical plasticity is least prone to
indicate material instability.

(4) In endochronic theory as well as classical plasticity, the inelastic strain is always normal
to the loading surface, while in vertex hardening models it is not. Thus, endochronic formula-
tion is stiffer than vertex hardening for strain directions parallel to the loading surface, and so
it is less prone to indicate material instability.

(5) The decision whether the plastic or the endochronic formulation is correct is solely up to
the test data or a microstructural model for a given material. The classical plasticity formulation
with normality rule is the least safe assumption when the material is expected to exhibit
instabilities (unstable strain-localization) or strain-softening, and when one is interested in
finding these instabilities. The experiments which are most relevant for making the choice
between these two theories are not only unloading and cyclic loading but also loading to the
side of the previous path in the strain space, and loading into the strain-softening range.

(6) For the loading surface and the hardening rules of plasticity, such as isotropic and
kinematic hardening, one can define their counterparts in endochronic formulations; but these
are relevant only as far as the “local” hardening rule near the current state is concerned.

(7) 1t is reasonable to expect that the intrinsic time increments d¢ exhibit stress-induced
anistropy, such that the quadratic form defining d¢ consists of invariants of de; only if the
material is stress-free. This type of stress-induced anisotropy distorts a circular inelastic
stiffness locus into an ellipse or an eccentric circle.

(8) While in plasticity theory it is possible to formulate the matrix of tangential moduli, one
for loading and one for unloading, in endochronic theory the matrix of tangential moduli can
only be expressed if the direction of the strain increment vector is known. Otherwise, the entire
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matrix of tangential moduli continuously depends on this direction, which is unknown when
material instability is to be analyzed. For proportional loading, the endochronic formulation can
be converted to equivalent non-associated plasticity formulation.

(9) By contrast to plasticity, but similarly to viscoplasticity, the ordinary endochronic
formulations do not satisfy a stability condition of Liapunov-type, as is revealed by studying
the response to pulsating loads of small amplitude. This is because Drucker’s stability postulate
is violated, and it must be so for materials which exhibit internal friction and microcracking.
Physically, however, only a continuity condition is justified, and this condition is satisfied by
endochronic formulations provided that the frequency of oscillating stress is bounded (which is
always true for finite element grids). Various refinements are possible to make endochronic
formulations satisfy the stronger stability condition and/or prevent unbounded accumulation of
inelastic deformation during cyclic loading.

(10) Introducing unloading and reloading criteria and kinematic hardening such that the
center of the loading surface is moved to the current stress point whenever loading reverses to
unloading or vice versa, the endochronic formulation can be made to satisfy Drucker’s postulate
for hysteresis loops, while at the same time not guaranteeing Liapunov stability.

(11) The fracturing material theory in which the loading surface depends on strain rather
than stress is similar to plasticity in that the inelastic stiffness locus is also a straight line.
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APPENDIX

ENDOCHRONIC THEORY AS VISCOPLASTICITY WITH
STRAIN-RATE DEPENDENT VISCOSITY

Consider the viscoplastic constitutive relation

dt
alo, €

de;; = Dijkm dopm + dtz, d(; = f",f'dl. dz= {63)
i

in which ¢ =time; z was initially called reduced time[1,2] and is now better known as intrinsic time [3]. In classical
viscoplasticity, the viscosity coefficient, g, is a function of o and possibly also € However, as suuemd by Schapery{l, 2],
generally a must be considered to depend also on the strain rates €;, which may be assumed in the form 2 = a,(o, €)axé).

If the inelastic strain develops gradually, function ax(¢) may be expected to be continuous and smooth. Then “a Taylor
series expansion is admissible:

[8A&)]™" = po+ Py + Piim€ipfim + Prpmpeifbintyg t - - . {64)

where 7= some exponent to be determined later. The series will be truncated after the cubic terms. The linear and cubic
terms must be, however, discarded (P = Piumpq = 0) because they would violate the condition that a must decrease as o]
increases.

Furthermore, it is of interest to examine the limit case for infinitely high strain raxc;léj-m. From eqn (64):

faey B, D dey deam -\
ldel (M’ dey, deyg Ief ) : (65)

On physical grounds, for jé] - this ratio must tend neither to infinity nor to zero. The latter case, which represents
perfectly elastic instantaneous response, is obtained for 2— r < 0. The former case is obtained for 2— r > 0. Therefore, the
only possibility left is 2— r =0 or r = 2. Equation (64) may then be rewritten in the form

dr

dt
dz=""= oo (Po+ Puméylum)'”

p (« )(podt’+pu-. de; deg, )2 (66)

Note that for a certain choice of pya. the reduced time coefficient g is a non-negative function of the total octahedral
strain rate. as suggested in 1968 by Schapery {p. 279 of Ref. [1]). The particular square root-type form, deduced here (and
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in Ref. {8]) from physicaily reasonable conditions, was the starting assumption of Valanis[3]. Equation (66) may be
rewritten as

fx = [(%)2"' (2_:)2]"2’ d{ = (Pigm dey derm )" (67

in which 1/7, = V(pe}ai(a, ©. Piam = Z:piamlai®. Z, = constant; 7, is a characteristic retardation time whose dependence
on o and ¢ models classical viscoplastic behavior. For rapid deformations, d{/dt =, dt drops from eqn (67) and z = {Z,.
which makes equs (67) and (63) equivalent to eqns (9) and (10). Coeficients P, are variable, which may be most simply
described by a scalar hardening function of {, as proposed first by Valanis(3).

The foregoing analysis shows that endochronic theory is a special case of general viscoplasticity and the intrinsic time
is equivalent to the reduced time used in viscoplasticity.



